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Preface

Fourier Analysis is a large branch of mathematics whose point of departure is
the study of Fourier series and integrals. However, it encompasses a variety
of perspectives and techniques, and so many different introductions with
that title are possible. The goal of this book is to study the real variable
methods introduced into Fourier analysis by A. P. Calderén and A. Zygmund
in the 1950’s.

We begin in Chapter 1 with a review of Fourier series and integrals,
and then in Chapters 2 and 3 we introduce two operators which are basic
to the field: the Hardy-Littlewood maximal function and the Hilbert trans-
form. Even though they appeared before the techniques of Calderén and
Zygmund, we treat these operators from their point of view. The goal of
these techniques is to enable the study of analogs of the Hilbert transform
in higher dimensions; these are of great interest in applications. Such oper-
ators are known as singular integrals and are discussed in Chapters 4 and 5
along with their modern generalizations. We next consider two of the many
contributions to the field which appeared in the 1970’s. In Chapter 6 we
study the relationship between H', BMO and singular integrals, and in
Chapter 7 we present the elementary theory of weighted norm inequalities.
In Chapter 8 we discuss Littlewood-Paley theory; its origins date back to the
1930’s, but it has had extensive later development which includes a number
of applications. Those presented in this chapter are useful in the study of
Fourier multipliers, which also uses the theory of weighted inequalities. We
end the book with an important result of the 80’s, the so-called T'1 theorem,
which has been of crucial importance to the field.

At the end of each chapter there is a section in which we try to give
some idea of further results which are not discussed in the text, and give

—
xiii



xiv Preface

references for the interested reader. A number of books and all the articles
cited appear only in these notes; the bibliography at the end of the text is
reserved for books which treat in depth the ideas we have presented.

The material in this book comes from a graduate course taught at the
Universidad Auténoma de Madrid during the academic year 1988-89. Part
of it is based on notes I took as a student in a course taught by José Luis
Rubio de Francia at the same university in the fall of 1985. It seemed to have
been his intention to write up his course, but he was prevented from doing so
by his untimely death. Therefore, I have taken the liberty of using his ideas,
which I learned both in his class and in many pleasant conversations in the
hallway and at the blackboard, to write this book. Although it is dedicated
to his memory, I almost regard it as a joint work. Also, I would like to thank
my friends at the Universidad Auténoma de Madrid who encouraged me to
teach this course and to write this book.

The book was first published in Spanish in the Coleccién de Estudios
of the Universidad Auténoma de Madrid (1991), and then was republished
with only some minor typographical corrections in a joint edition of Addison-
Wesley /Universidad Auténoma de Madrid (1995). From the very beginning
some colleagues suggested that there would be interest in an English trans-
lation which I never did. But when Professor David Cruz-Uribe offered
to translate the book I immediately accepted. I realized at once that the
text could not remain the same because some of the many developments
of the last decade had to be included in the informative sections closing
each chapter together with a few topics omitted from the first edition. As
a consequence, although only minor changes have been introduced to the
core of the book, the sections named “Notes and further results” have been
considerably expanded to incorporate new topics, results and references.

The task of updating the book would have not been accomplished as it
has been without the invaluable contribution of Professor Cruz-Uribe. Apart
from reading the text, suggesting changes and clarifying obscure points, he
did a great work on expanding the above mentioned notes, finding references
and proposing new results to be included. The improvements of this book
with respect to the original have certainly been the fruit of our joint work,
and I am very grateful to him for sharing with me his knowledge of the
subject much beyond the duties of a mere translator.

Javier Duoandikoetxea
Bilbao, June 2000
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Preliminaries

Here we review some notation and basic results, but we assume that they are
mostly well known to the reader. For more information, see, for example,
Rudin [14].

In general we will work in R™. The Euclidean norm will be denoted by
|-|. fz € R® and r > 0,

B(z,r)={yeR": jz—y| <r}

is the ball with center z and radius r. Lebesgue measure in R™ is denoted
by dz and on the unit sphere S”~! in R" by do. If E is a subset of R”, |E|
denotes its Lebesgue measure and x g its characteristic function: xg(z) =1
ifz € Fand 0if z € E. The expressions almost everywhere or for almost
every T refer to properties which hold except on a set of measure 0; they are
abbreviated by “a.e.” and “a.e. z.”

Ifa= (a1,...,an) € N" is a multi-index and f : R® — C, then

olalf

Dof =2t
f ozi' - - Oz’

where |a| = a1+ - -+ an and 2® = 7' - - - 28",
Let (X,pn) be a measure space. LP(X,pu), 1 < p < oo, denotes the

Banach space of functions from X to C whose p-th powers are integrable;
the norm of f € LP(X, p) is

151, = /. 15 au) "

xvii



xvili Preliminaries

L%(X, 1) denotes the Banach space of essentially bounded functions from
X to C; more precisely, functions f such that for some C > 0,

p({z € X:|f(z)] > C}) =0.

The norm of f, ||fllco, is the infimum of the constants with this property. In
general X will be R™ (or a subset of R*) and du = dz; in this case we often do
not give the measure or the space but instead simply write L?. For general
measure spaces we will frequently write LP(X) instead of LP(X, p); if p is
absolutely continuous and du = wdz we will write LP(w). The conjugate
exponent of p is always denoted by p':

1 1

» + 7 1.

The triangle inequality on L has an integral version which we refer to

as Minkowski’s integral inequality and which we will use repeatedly. Given
measure spaces (X, u) and (Y, v) with o-finite measures, the inequality is

(/x ,, d#m) s / ( | r@or du(z)) " )

The convolution of two functions f and g defined on R™ is given by

frg(z)= /R" fW)e(z—y)dy = /R" flz—y)g(y)dy

whenever this expression makes sense.

/ f(,9) dv(y)
Y

The spaces of test functions are C°(R™), the space of infinitely differ-
entiable functions of compact support, and S(R™), the so-called Schwartz
functions. A Schwartz function is an infinitely differentiable function which
decreases rapidly at infinity (more precisely, the function and all its deriva-
tives decrease more rapidly than any polynomial increases). Given the ap-
propriate topologies, their duals are the spaces of distributions and tempered
distributions. It makes sense to define the convolution of a distribution and
a test function as follows: if T € C°(R™) and f € C(R"), then

T* f(z) = (TvTIf))
where f(y) = f(-y) and 7.f(y) = f(z +y). Note that this definition
coincides with the previous one if T is a locally integrable function. Similarly,
we can take T € S(R™) and f € S(R™). We denote the duality by either
(T, f) or T(f) without distinction.

References in square brackets are to items in the bibliography at the end
of the book.

Finally, we remark that C will denote a positive constant which may be
different even in a single chain of inequalities.
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Chapter 1

Fourier Series and
Integrals

1. Fourier coefficients and series

The problem of representing a function f, defined on (an interval of) R, by
a trigonometric series of the form

(1.1) f(z)= f: a cos(kx) + by sin(kz)
k=0

arises naturally when using the method of separation of variables to solve
partial differential equations. This is how J. Fourier arrived at the problem,
and he devoted the better part of his Théorie Analytiqgue de la Chaleur
(1822, results first presented to the Institute de France in 1807) to it. Even
earlier, in the middle of the 18th century, Daniel Bernoulli had stated it
while trying to solve the problem of a vibrating string, and the formula for
the coeficients appeared in an article by L. Euler in 1777.

The right-hand side of (1.1) is a periodic function with period 27, so f
must also have this property. Therefore it will suffice to consider f on an
interval of length 27. Using Euler’s identity, e** = cos(kz) + isin(kz), we
can replace the functions sin(kz) and cos(kz) in (1.1) by {e*** : k € Z}; we
will do so from now on. Moreover, we will consider functions with period 1
instead of 27, so we will modify the system of functions to {e?"%* : k € Z}.
Our problem is thus transformed into studying the representation of f by

(1.2) flz)= i cxe?mike,

k=—00

1



2 1. Fourier Series and Integrals

If we assume, for example, that the series converges uniformly, then by
multiplying by e~2™™* and integrating term-by-term on (0,1) we get

1
om = / f@)e™?™m% dg
0

because of the orthogonality relationship

1 -
(1-3) / 621rikIe—21rimz d.’l: - 0 lf k # m
0 1 ifk=m.

Denote the additive group of the reals modulo 1 (that is R/Z) by T,
the one-dimensional torus. This can also be identified with the unit circle,
S*. Saying that a function is defined on T is equivalent to saying that it is
defined on R and has period 1. To each function f € L!(T) we associate the
sequence {f (k)} of Fourier coefficients of f, defined by

1
(1.4) f(k) = / flz)e 2k 4.
0
The trigonometric series with these coefficients,
(e e}
(1.5) Y. ke,
k=—o00

is called the Fourier series of f.

Our problem now consists in determining when and in what sense the
series (1.5) represents the function f.

2. Criteria for pointwise convergence

Denote the N-th symmetric partial sum of the series (1.5) by Sy f(z); that
is,

N
Snf@) = 3 k)=,
k=—N

Note that this is also the N-th partial sum of the series when it is written
in the form of (1.1).

Our first approach to the problem of representing f by its Fourier series
is to determine whether lim Sy f(z) exists for each z, and if so, whether it
is equal to f(z). The first positive result is due to P. G. L. Dirichlet (1829),
who proved the following convergence criterion: if f is bounded, piecewise
continuous, and has a finite number of maxima and minima, then lim Sy f(z)
exists and is equal to 3(f(z+) + f(z—)]. Jordan’s criterion, which we prove
below, includes this result as a special case.



2. Criteria for pointwise convergence 3

In order to study Sy f(z) we need a more manageable expression. Dirich-
let wrote the partial sums as follows:

N 1 .
Snf(zx) = Z / f(t)e—21rikt dt - e2mike
k=—N"0

= /l f(t)DN(:I: —t)dt
0

-/ - HDn (),
0

where Dy is the Dirichlet kernel,
N
DN (t) — Z e21rikt.
k=-N

If we sum this geometric series we get
sin(m(2N + 1)t)
1. Dn(t) = ——————".
(16) N(®) sin(mt)
This satisfies

1
/DN(t)dtzl and  |Dn(t)| < s<tl<1/2.
0

sin(wd)’
We will prove two criteria for pointwise convergence.

Theorem 1.1 (Dini’s Criterion). If for some x there exists 6 > 0 such that

/ flz+t)— f(=)
|t|<é

dt < 00,
£ o0

then
Jim S f(@) = f(a).

Theorem 1.2 (Jordan’s Criterion). If f is a function of bounded variation
in a neighborhood of =, then

Jim_Swf(z) = 3[f(a+) + f(z-)).

At first it may seem surprising that these results are local, since if we
modify the function slightly, the Fourier coefficients of f change. Neverthe-
less, the convergence of a Fourier series is effectively a local property, and if
the modifications are made outside of a neighborhood of z, then the behav-
ior of the series at z does not change. This is made precise by the following
result.



4 1. Fourier Series and Integrals

Theorem 1.3 (Riemann Localization Principle). If f is zero in a neighbor-
hood of z, then

Aim Sy f(z) = 0.

An equivalent formulation of this result is to say that if two functions
agree in a neighborhood of z, then their Fourier series behave in the same
way at .

From the definition of Fourier coefficients (1.4) it follows immediately
that

Lf(R) < N1,

but a sharper estimate is true which we will use to prove the preceding
results.

Lemma 1.4 (Riemann-Lebesgue). If f € L}(T) then
lim f(k)=0.

|k|—o0

Proof. Since e2™% has period 1,
1
i) = [ e e da
0
1
= _/ f(x)e—21rik(z+1/2k) dr
0

1
= / flx—1/2k)e™ 2™k dg.
0

Hence,

. 1 1! )
1) =5 [ 1@ = sz = 1/20)e ™ da.
If f is continuous, it follows immediately that

lim f(k)=0.

k|00

For arbitrary f € L!(T), given ¢ > 0, choose g continuous such that
IIf — glli < ¢/2 and choose k sufficiently large that |§(k)| < /2. Then

If(®R)] < 1(f = g (k) + 19(k)| < IIf — glla + 13(k)] < €.
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Proof of Theorem 1.3. Suppose that f(t) =0 on (z — §,z + §). Then
sin(m(2N + 1)t)
Sy f(z =/ T —t)—————dt
f(@) s<lt|<1/2 fle =) sin(mt)
= (9™ Y (N) + (ge ™) (=N),

where

9(t) =

is integrable. By the Riemann-Lebesgue lemma we conclude that

Jim Sy f(z) = 0.

t)
mX{&q:kl/fz}(t)

Proof of Theorem 1.1. Since the integral of Dy equals 1,

1/2 il
Sui@ - 1@ = [ 150~ @)=

/t|<6 /<|z|<1/2

By the Riemann-Lebesgue lemma both of these integrals tend to 0. The
second if we argue as in the previous proof, the first since by hypothesis the
function

dt

flz—t) - f(z)

sin(mt)

is integrable. (Recall that if |t| < §, sin(wt) and 7t are equivalent.) a

X{jt|<s}(t)

Proof of Theorem 1.2. Since every function of bounded variation is the
difference of two monotonic functions, we may assume that f is monotonic
in a neighborhood of z. Since

1/2 1/2
swi@= [ f@-nDayat= [Tl —0+ f@+ OlDne)
it will be enough to show that for g monotonic
1/2 1
lim g(t)Dn(t) dt = —g(0+).
N—oo fg 2

Further, we may assume that g(0+) = 0 and that g is increasing to the right
of 0. Given ¢ > 0, choose § > 0 such that g(¢) < eif 0 <t < 4. Then

1/2 1/2
/ (t)Dn(t)dt = / /
0
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Again by the Riemann-Lebesgue lemma, the second integral tends to 0. We
ply the second mean value theorem for integrals! to the first integral.
Then for some v, 0 < v < 6,

) ')
/ o(t) D (8) dt = g(6-) / Dn(t) dt
0 v

Furthermore,
/V sin(m (2N + 1)t) ( n(lﬂt) :t) dt,

/ éDN(t)dt’ <
’ + / sm(1r(2N+1)t l
[ty

v
1

— dt+ 2
sin(mt)  wt + :};0

8
</
v

<C.

Hence,

’ g(t)Dn(2) dtl < Ce.
0

3. Fourier series of continuous functions

If f satisfies a Lipschitz-type condition in a neighborhood of z, that is,
|f(z+1t)— f(z)] < C|t|* for some a > 0, |t| < 6, then Dini’s criterion applies
to it. However, continuous functions need not satisfy this condition or any
other convergence criterion we have seen. This must be the case because of
the following result due to P. du Bois-Reymond (1873).

Theorem 1.5. There exists a continuous function whose Fourier series di-
verges at a point.

Du Bois-Reymond constructed a function with this property, but we will
show that one exists by applying the uniform boundedness principle, also
known as the Banach-Steinhaus theorem.

Lemma 1.6 (Uniform Boundedness Principle). Let X be a Banach space,
Y a normed vector space, and let {Ty}aca be a family of bounded linear

YIf ¢ is continuous and h monotonic on [a, b], then there exists ¢, a < ¢ < b, such that

/:h¢=h(b—)/:¢+h(a+)/:¢¢
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operators from X to'Y. Then either
sup || T,|| < oo
a

or there exists £ € X such that

sup || Toz|ly = .
a

(Recall that the operator norm of T, is ||T,|| = sup{||Taz|ly : |lz|lx <
1}.) A proof of this result can be found, for example, in Rudin [14, Chap-
ter 5].

Now let X = C(T) with the norm || - ||c and let Y = C. Define T :
X —Y by

1/2
TInf=Snf(0)= /2f(t)DN(t) dt.

Define the Lebesgue numbers Ly by

1/2
v= [ Dae)las
-1/2
it is immediate that |Tn f| < Ly||fllco- Dn(t) has a finite number of zeros
so sgn Dy (t) has a finite number of jump discontinuities. Therefore, by
modifying it on a small neighborhood of each discontinuity, we can form a
continuous function f such that ||f|lc = 1 and |[Tnf| > Ly — €. Hence,
ITnll = Ln. Thus if we can prove that Ly — oo as N — oo, then by
the uniform boundedness principle there exists a continuous function f such
that

limsup Sy f(0)] = oo;
N—-oo
that is, the Fourier series of f diverges at 0.

Lemma 1.7. Ly = % log N + O(1).

Proof.
1/2 | o
Ly = 2/ sin(m(2N + l)t)‘ it + 0(1)
0 it
N+1/2 |
= 2/ sn(m)) 4+ o1)
0 s
N-L o okt1 g
sin(mt)
=2) /k — | dt+0()
k=0
~1 .
_2 Mt L o)
m k=0 0 t+ k
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2 ! =g
=;/0 |sm(7rt)|;t+—kdt+0(1)

4
= FlogN +0(1).

4. Convergence in norm

The development of measure theory and LP spaces led to a new approach
to the problem of convergence. We can now ask:

(1) Does A}im ISNf — fllp =0 for f € LP(T)?

(2) Does A}im Snf(z) = f(z) almost everywhere if f € LP(T)?
—00

We can restate the first question by means the following lemma.

Lemma 1.8. Syf converges to f in LP norm, 1 < p < oo, if and only if
there exists Cp independent of N such that

(1-7) "SNf"p < Cp“f"p-

Proof. The necessity of (1.7) follows from the uniform boundedness prin-
ciple.

To see that it is sufficient, first note that if g is a trigonometric poly-
nomial, then Syg = g for N > degg. Therefore, since the trigonometric
polynomials are dense in LP (see Corollary 1.11), if f € LP we can find a
trigonometric polynomial g such that || f — g|l, < ¢, and so for N sufficiently
large

ISnf = fllo < ISN(f = 9o + 1Sng = gllp + I f = gllp < (Cp + 1)e.
a

If 1 < p < 00, then inequality (1.7) holds, as we will show in Chapter 3.
When p = 1, the L! operator norm of Sy is again Ly, and so by Lemma
1.7 the answer to the first question is no.

When p = 2, the functions {e?"**} form an orthonormal system (by
(1.3)) which is complete (i.e. an orthonormal basis) by the density of the
trigonometric polynomials in L?. Therefore, we can apply the theory of
Hilbert spaces to get the following.



5. Summability methods 9

Theorem 1.9. The mapping f +— {f(k)} is an isometry from L? to €2, that
18,

IfI3= Y If(k)?
k=—o00

Convergence in norm in L? follows from this immediately.

The second question is much more difficult. A. Kolmogorov (1926) gave
an example of an integrable function whose Fourier series diverges at every
point, so the answer isnoif p=1. If f € LP, 1 < p < 0o, then the Fourier
series of f converges almost everywhere. This was shown by L. Carleson
(1965, p = 2) and R. Hunt (1967, p > 1). Until the result by Carleson, the
answer was unknown even for f continuous.

5. Summability methods

In order to recover a function f from its Fourier coefficients it would be
convenient to find some other method than taking the limit of the partial
sums of its Fourier series since, as we have seen, this approach does not
always work well.

One such method, Cesaro summability, consists in taking the limit of
the arithmetic means of the partial sums. As is well known, if limay exists
then

a1+ +ag
lim ———
k—o0 k
also exists and has the same value.

Define

onf(z N+1 Zskf(x)

/ ft)N+IZDk(x—t)dt
=0

- /0 F()Fn(z — t) dt,

where Fy is the Fejér kernel,

1 1 sin(m(N + 1)t) 2
Fn(t) = Nt1 ZD’c TN+1 ( sin(t) )

Fx has the following properties:
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1
(18) 1Ew I = /0 Fi(t)dt =

lim Fn(t)dt=0 ifd > 0.
N—oo Js<jt|<1/2

Because Fy is positive, its L! norm coincides with its integral and is 1.
This is not the case for the Dirichlet kernel: its integral equals 1 because of
cancellation between its positive and negative parts while its L! norm tends
to infinity with N.

Theorem 1.10. If f € L?, 1 < p < o0, or if f is continuous and p = 0o
then

A}Enm lenf = fll, = 0.

Proof. Since [ Fy = 1, by Minkowski’s inequality we have that
1/2
lowf —fllp = / | MC= 0= Ol EN () a

< /m«s (- =8) = FOlloFn(2) dt + 2||f||p/6 Fn(t)dt.

<|t|]<1/2
Since for 1 < p < 00,

lim |I£(- = ) = £()llp =0,

and the same limit holds if p = oo and f is continuous, the first term can
be made as small as desired by choosing a suitable §. And for fixed &, by
(1.8) the second term tends to 0. a

Corollary 1.11.

(1) The trigonometric polynomials are dense in LP, 1 < p < oo.
(2) If f is integrable and f(k) = 0 for all k, then f is identically zero.

A second summability method is gotten by treating a Fourier series as
the formal limit on the unit circle (in the complex plane) of

(1.9) u(z) = Z Fk)2* + Z fk)ZH 2 =re?m®,

k=—o00

Since {f(k)} is a bounded sequence, this function is well defined on |z| < 1.
It can be rewritten as

u(re?™) = Z k)r|k|e2’”‘°‘9 / f@R)P(8—1t)dt
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where
© 2

. 1—r
P.(t) = |kl 2mikt _
® Z e 1 — 2r cos(2nt) + r2

k=-—o00

is the Poisson kernel. The Poisson kernel has properties analogous to those
of the Fejér kernel:

Fr(t) 20,
(1.10) /01 P(tydt =1,

lim P (t)dt=0 ifé>0.
r—17 Ja<|t|<1/2

Therefore, we can prove a result analogous to Theorem 1.10.

Theorem 1.12. If f € LP, 1 < p < 00, or if f is continuous and p = 0o,
then

lim [Py f = fllp = 0.

Since the function u is harmonic on |z| < 1, it is the solution to the
Dirichlet problem:

Au=0 ifl|z] <1,
u=f if|z]=1,
where the boundary condition is interpreted in terms of Theorem 1.12.

In Chapter 2 we will study the almost everywhere convergence of o f(z)
and P, * f(x).

6. The Fourier transform of L! functions
Given a function f € L'(R™), define its Fourier transform by
(1.11) fOr = [ feetas,

]Rn

where 7 - & = 7161 + 2262 + - - - + To€n- The following is a list of properties
of the Fourier transform:

(1.12) (af +Bg)"=af +B§ (linearity);
(1.13) o < IIfll1 and f is continuous;
(1.14) I&llim f(€) =0 (Riemann-Lebesgue);

(1.15) (f*9r = fé;
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(116)  (maf)(E) = F(§)*™™%, where Tuf(z) = f(x +h);
(fe2™FoYE) = f(6 - h);
(1.17) if p € Op, (an orthogonal transformation), then

(f(p)V (&) = F(pE);
(1.18) if g(z) = A" f(A!z), then §(¢) = f(AE);

0o () =i

af
3;

The continuity of f follows from the dominated convergence theorem; (1.14)
can be proved like Lemma 1.4; the rest follow from a change of variables, Fu-
bini’s theorem and integration by parts. In (1.19) we assume that 8f/0z; €
L* and in (1.20) that z;f € L.

Unlike on the torus, L!(R™) does not contain LP(R™), p > 1, so (1.11)
does not define the Fourier transform of functions in those spaces. For the
same reason, the formula which should allow us to recover f from f ,

(1.20) (=2miz; f)(€) = 7-(£).

f(e)e?m =t d,
Rﬂ

may not make sense since (1.13) and (1.14) are all that we know about f,
and they do not imply that f is integrable. (In fact, f is generally not
integrable.)

7. The Schwartz class and tempered
distributions

A function f is in the Schwartz class, S(R™), if it is infinitely differentiable
and if all of its derivatives decrease rapidly at infinity; that is, if for all
a,8 €N,

sup|2*D?f(2)| = pas(f) < 00

Functions in CZ° are in S, but so are functions like e~1* which do not have
compact support. The collection {p, g} is a countable family of seminorms
on S, and we can use it to define a topology on S: a sequence {¢x} converges
to 0 if and only if for all @, 8 € N?,

kli_{& Pa,3(dx) = 0.
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With this topology S is a Fréchet space (complete and metrizable) and is
dense in LP(R™), 1 < p < oo. In particular, S C L! and (1.11) defines the
Fourier transform of a function in S.

The space of bounded linear functionals on S, &, is called the space of
tempered distributions. A linear map T from S to C is in &' if

lim T(¢x) =0 whenever lim ¢ =0 inS.
k—o0 k—o0

Theorem 1.13. The Fourier transform is a continuous map from S to S
such that

(1.21) /n fo= /R fg

and

(122) f@) = [ Feem=<de

Equality (1.22) is referred to as the inversion formula.

To prove Theorem 1.13 we need to compute the Fourier transform of a
particular function.

Lemma 1.14. If f(z) = e~™!" then f(£) = ek

Proof. We could prove this result directly by integrating in C, but we will
give a different proof here. It is enough to prove this in one dimension, since
in R™ f is the product of n identical integrals.

The function f(z) = e~™ is the solution of the differential equation
v +27rzu =0,
u(0) = 1.

By (1.19) and (1.20) we see that 4 satisfies the same differential equation
with the initial value

4(0) =/Ru(z)dx=/ne-"2 dz = 1.

Therefore, by uniqueness, f = f. ]
Proof of Theorem 1.13. By (1.19) and (1.20) we have

£*DPf(€) = C(D*2° f)¢),
)

|e2DPf(¢)| < C|\DP £
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The L' norm can be bounded by a finite linear combination of seminorms
of f, which implies that the Fourier transform is a continuous map from S
to itself.

Equality (1.21) is an immediate consequence of Fubini’s theorem since
f(x)g(y) is integrable on R™ x R™.

From (1.18) and (1.21) we get
[ r@30a)az = [ feprgh-ta) da.
If we make the change of variables Az = y in the first integral, this becomes
[ 10 159@) da = [ f@)e(x1z) da
if we then take the limit as A — oo, we get
10) [ 9(a)ds = ) [ f(o) o
Let g(z) = e~™=”; then by Lemma 1.14,

10 = [ o) de,
which is (1.22) for z = 0. If we replace f by 7zf, then by (1.16),

£(z) = (72£)(0) = f (e = [ fle)er=< .

If we let f(z) = f(—x), we get the following corollary.
Corollary 1.15. For f € S, (f)" = f, and so the Fourier transform has
period 4 (i-e. if we apply it four times, we get the identity operator).

Definition 1.16. The Fourier transform of T € S’ is the tempered distri-
bution T given by

T(f)=T(f), fe€S.

By Theorem 1.13, T is a tempered distribution, and in particular, if T is
an integrable function, then 7' coincides with the Fourier transform defined
by equation (1.11). Likewise, if u is a finite Borel measure (i.e. a bounded
linear functional on Co(R™), the space of continuous functions which vanish
at infinity), then /& is the bounded continuous function given by

e = [ et duta)

For 4, the Dirac measure at the origin, this gives us §=1.



8. The Fourier transform on ILP, 1 <p <2 15

Theorem 1.17. The Fourier transform is a bounded linear bijection from
S’ to S’ whose inverse is also bounded.

Proof. If T, = T in &', then for any f € S,
To(f) = Ta(f) = T(f) = T(f).

Furthermore, the Fourier transform has period 4, so its inverse is equivalent
to applying it 3 times; therefore, its inverse is also continuous. 0

_ If we define ' by T(f) = T(f), then it follows from Corollary 1.15 that
(TY"=T. And if T € L! then by the inversion formula we get that

T(@) = [ T ag

in particular, T is a bounded, continuous function.

8. The Fourier transform on I?, 1 <p <2

If f € LP,1 < p < 00, then f can be identified with a tempered distribution:
for ¢ € S define

7y(6)= [ 1o

Clearly this integral is finite. To see that Ty is continuous, suppose that
¢r — 0in S as k — oo. Then by Hélder’s inequality,

1T (0x)| < 1| lpllbillp-

Then |||l is dominated by the L° norm of functions of the form z°%¢y,
and so by a finite linear combination of seminorms of ¢ ; hence, the left-hand
side tends to 0 as k — oo.

Moreover, when 1 < p < 2 we have that f is a function.
Theorem 1.18. The Fourier transform is an isometry on L?; that is, f €

L2 and || fllz = || fll2. Furthermore,

f(€) = lim f(z)e ™= dg

R—o00 jz|<R

and

f(z) = lim feerm=t de,

R—oo Jie|<R

where the limits are in L2.

The identity || f|l2 = ||f]l2 is referred to as the Plancherel theorem.
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Proof. Given f,h € S, let g = I:z, so that § = h. Then by (1.21) we have
that

(1.23) / gh= [ fh.

If we let h = f then we get ||f|lz = || f||2 for f € S. Since S is dense in L2,
the Fourier transform extends to all f in L? with equality of norms.
Finally, the continuity of the Fourier transform implies the given formu-
las for f and f as limits in L2, since fxB,r) and fxp(,r) converge to f
and f in L2. o

If f € LP,; 1 < p < 2, then it can be decomposed as f = f; + f2, where
fi € L' and f, € L?. (For example, let f; = IX{zif(@)>1) and fa = f - f1.)
Therefore, f = fl + fz € L™ + L2?. However, by applying an interpolation
theorem we can get a sharper result.

Theorem 1.19 (Riesz-Thorin Interpolation). Let 1 < po,p1,90,q1 < 00,
and for 0 < 6 < 1 define p and q by

1 1-6. 8 1 _1-6 8

P m P 4 @ @
If T is a linear operator from LP0 + LP* to L% + L9 such that

IT fllao < Mol|fllp, ~ for f € LP°
and
ITflley < M| fllpy  for f € LP,
then
ITfllg < My~ MY|fllp  for f € LP.

The proof of this result uses the so-called “three-lines” theorem for ana-
lytic functions; it can be found, for example, in Stein and Weiss [18, Chap-
ter 5] or Katznelson [10, Chapter 4].

Corollary 1.20 (Hausdorff-Young Inequality). If f € LP, 1 < p < 2, then
felL” and
£l < 1 £le-

Proof. Apply Theorem 1.19 using inequality (1.13), ||fA||oo < |Ifll1, and the
Plancherel theorem, || f|l2 = || fll2- O
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We digress to give another corollary of Riesz-Thorin interpolation which
is not directly related to the Fourier transform but which will be useful in
later chapters.

Corollary 1.21 (Young's Inequality). If f € LP and g € L9, then f+g €
L™, where 1/r+1=1/p+1/q, and

If*gll- < I flpligllq-

Proof. If we fix f € L? we immediately get the inequalities
I1f *gllp < I fllpllgllx

and

I * glloo < I flollglly-
The desired result follows by Riesz-Thorin interpolation. a

9. The convergence and summability of Fourier
integrals

The problem of recovering a function from its Fourier transform is similar
to the same problem for Fourier series. We need to determine if and when

dm [ foem=tas = 1),

where BR = {Rz : z € B}, B is an open convex neighborhood of the
origin, and the limit is understood either as in LP or as pointwise almost
everywhere. If we define the partial sum operator Sg by

(SRf)Az Xan’

then this problem is equivalent to determining if

lim Sgf = f.

R—o00
Analogous to Lemma 1.8, a necessary and sufficient condition for conver-
gence in norm is that

||SRf“p < Cp”f”w

where Cj, is independent of R. When n = 1 this is the case; we will prove
this in Chapter 3. We will also prove several partial results when n > 1, but
in general there is no convergence in norm when p # 2. We will discuss this
in Chapter 8.

In the case n =1, if B = (—1,1) then
Srf(z) = Dp* f(x),
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where Dp is the Dirichlet kernel,

R .
Dr(z) =/ €27z ge _ sm(27rR:c)_
—-R T
This is clearly not integrable, but it is in LY(R) for any ¢ > 1, so Dg  f is
well defined if f € LP, 1 < p < o0.
Almost everywhere convergence depends on the bound

I S‘;PISRf”Ip < Gpllfllp-

This holds if 1 < p < oo (the Carleson-Hunt theorem) but we cannot prove
it here.

For the Fourier transform, the method of Cesaro summability consists
in taking integral averages of the partial sum operators,

orf(z / 5. (a) d,
and determining if limogf(z) = f(z). Whenn =1 and B = (-1,1),
orf(z) = Fr* f(z),

where Fg is the Fejér kernel,
sm2(7rRx)
(1.24 Fr(z) = / Di(z) dt =
) {2 = Rlnays
Unlike the Dirichlet kernel, the Fejér kernel is integrable. Since it has prop-
erties analogous to (1.8), one can prove that in L?, 1 < p < oo,
Jim orf = f.
The proof is similar to that of Theorem 1.10. In Chapter 2 we will prove two

general results from which we can deduce convergence in LP and pointwise
almost everywhere for this and the following summability methods.

The method of Abel-Poisson summability consists in introducing the
factor e~2ml into the inversion formula. Then for any t > 0 the integral
converges, and we take the limit as t tends to 0. If we instead introduce the
factor e~ "t’I¢* | we get the method of Gauss-Weierstrass summability. More
precisely, we define the functions

(1'25) ‘U,(l‘, t) :/ e“z""qflf(é-)e%rix{ df,
(1.26) w(z,t) —_:/ e—vrtzlﬁlzf(g)ehiz-{ de,

and then try to determine if
1.27 li ) = f(z),
(1.27) Jim u(z,t) = f(z)
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(1.28) ¢li%1+ w(z,t) = f(z)

in LP? or pointwise almost everywhere.

One can show that u(z,t) is harmonic in the half-space R7*! = R x
(0,00). When n =1 we have an equivalent formula analogous to (1.9):

oo _ 0 B
(129 u@)= [ foetas [ foenEds s —avit
0 —00
which immediately implies that u is harmonic. The limit (1.27) can be
interpreted as the boundary condition of the Dirichlet problem,
Au=0 on IR’I“,
u(z,0) = f(z), z€R".
It follows from (1.25) that
u(z,t) = P * f(z),
where P,(£) = e~2™€l. One can prove by a simple calculation if n = 1, and
a more difficult one when n > 1 (see Stein and Weiss 18, p. 6]), that
re)
T (24 [22) T

This is called the Poisson kernel.

(1.30) Fi(z) =

In the case of Gauss-Weierstrass summability, one can show that the
function w(z,t) = w(z,v/4mt) is the solution of the heat equation

%ﬂ -A®=0 on R},

w(z,0) = f(z) ze€R",
and (1.28) can be interpreted as the initial condition for the problem. We
also have the formula
w(z,t) = Wy f(),
where W; is the Gauss-Weierstrass kernel,
(1.31) Wi(z) =t e ™21/2,

This formula can be proved using Lemma 1.14 and (1.18).

10. Notes and further results

10.1. References.

The classic reference on trigonometric series is the book by Zygmund
[21], which will also be a useful reference for results in the next few chap-
ters. However, this work can be difficult to consult at times. Another
comprehensive reference on trigonometric series is the book by Bary [1].
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There are excellent discussions of Fourier series and integrals in Katznel-
son [10] and Dym and McKean [4]. The book by R. E. Edwards [5] is an
exhaustive study of Fourier series from a more modern perspective. The
article by Weiss [20] and the book by Korner [12] are also recommended.
An excellent historical account by J. P. Kahane on Fourier series and their
influence on the development of mathematical concepts is found in the first
half of [9]. The book Fourier Analysis and Boundary Value Problems, by
E. Gonzélez-Velasco (Academic Press, New York, 1995), contains many ap-
plications of Fourier’s method of separation of variables to partial differential
equations and also contains historical information. (Also see by the same
author, Connections in mathematical analysis: the case of Fourier series,
Amer. Math. Monthly 99 (1992), 427-441.) The book by O. G. Jgrsboe and
L. Melbro (The Carleson-Hunt Theorem on Fourier Series, Lecture Notes
in Math. 911, Springer-Verlag, Berlin, 1982) is devoted to the proof of this
theorem. The original references for this are the articles by L. Carleson
(On convergence and growth of partial sums of Fourier series, Acta Math.
116 (1966), 135-157) and R. Hunt (On the convergence of Fourier series,
Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Ed-
wardsville, Ill., 1967), pp. 235-255, Southern Illinois Univ. Press, Carbon-
dale, 1968). Kolmogorov’s example of an L! function whose Fourier series
diverges everywhere appeared in Une série de Fourier-Lebesgue divergente
partout (C. R. Acad. Sci. Paris 183 (1926), 1327-1328).

10.2. Multiple Fourier series.

Let T™ be the n-dimensional torus (which we can identify with the quo-
tient group R™/Z"). A function defined on T is equivalent to a function on
R™ which has period 1 in each variable. If f € L!(R™) then we can define
its Fourier coeflicients by

Fo) = / f(z)e 2oV 4z, v e TP,
and construct the Fourier series of f with these coeflicients,
Z f(u)e%rix-u-
veZn

One can prove several results similar to those for Fourier series in one vari-
able, but one needs increasingly restrictive regularity conditions as n in-
creases. See Stein and Weiss [18, Chapter 7).

10.3. The Poisson summation formula.
Let f be a function such that for some é > 0,

If(z)] S AL+ |z)™% and |f()I < A +]¢))™°
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(In particular, f and f are both continuous.) Then

S fatv) = Y fwpe.

vezr vezr

This equality (or more precisely, the case when z = 0) is known as the
Poisson summation formula and is nothing more than the inversion formula.
The left-hand side defines a function on T™ whose Fourier coefficients are

precisely f (v).

10.4. Gibbs phenomenon.

Let f(z) = sgn(z) on (—1/2,1/2). By Dirichlet’s criterion, for example,
we know that Sy f(z) converges to f(z) for all z. To the right of 0 the
partial sums oscillate around 1 but, contrary to what one might expect, the
amount by which they overstep 1 does not tend to 0 as N increases. One
can show that

lim sup Sy f(z) = Z/ S0() 4~ 1.17898 .

N—-oo o ™ Jo Yy
This phenomenon occurs whenever a function has a jump discontinuity. It
is named after J. Gibbs, who announced it in Nature 59 (1899), although
it had already been discovered by H. Wilbraham in 1848. See Dym and
McKean [4, Chapter 1] and the paper by E. Hewitt and R. E. Hewitt (The
Gibbs- Wilbraham phenomenon: an episode in Fourier analysis, Arch. Hist.
Exact Sci. 21 (1979/80), 129-160).

Gibbs phenomenon is eliminated by replacing pointwise convergence by
Cesaro summability. For if m < f(z) < M, then by the first two properties
of Féjer kernels in (1.8), m < on f(z) < M. In fact, it can be shown that if
m < f(z) < M on an interval (a,b), then for any € > 0, m — e < onf(z) <
M +eon (a+e€b—¢) for N sufficiently large.

10.5. The Hausdorff-Young inequality.

Corollary 1.20 was gotten by an immediate application of Riesz-Thorin
interpolation. But in fact a stronger inequality is true: if 1 < p < 2 then

n/f2
< (22 s,
P (p/)l/p ¥4

This inequality is sharp since equality holds for f(z) = e~™=1” This result
was proved by W. Beckner (Inequalities in Fourier analysis, Ann. of Math.
102 (1975), 159-182); the special case when p is even was proved earlier by
K. I. Babenko (An inequality in the theory of Fourier integrals (Russian),
Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 531-542).
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In the same article, Beckner also proved a sharp version of Young's
inequality (Corollary 1.21).

10.6. Eigenfunctions for the Fourier transform in L?(R).

Since the Fourier transform has period 4, if f is a function such that
f = Af, we must have that A* = 1. Hence, A = %1, +i are the only possible
eigenvalues of the Fourier transform. Lemma 1.14 shows that exp(—mz?) is
an eigenfunction associated with the eigenvalue 1. The Hermite functions
give the remaining eigenfunctions: for n > 0,
(-1

n!

hn(z) = exp(wxz)d;ﬂn exp(—mz?)

satisfies Ay, = (=%)™hy. If we normalize these functions,

_ hn — -n 1/2
—_—th“2 [(47)~™V2n!)/2h,,

we get an orthonormal basis of L2(R) such that

f=(=)™f enen.
n=0
Thus Lz(R) decomposes into the direct sum Hy @ H; & Hy @ Hz, where
on the subspace H;, 0 < j < 3, the Fourier transform acts by muitiplying
functions by 7.

€n

This approach to defining the Fourier transform in L?(R) is due to
N. Wiener and can be found in his book ( The Fourier Integral and Certain of
its Applications, original edition, 1933; Cambridge Univ. Press, Cambridge,
1988). Also see Dym and McKean [4, Chapter 2].

In higher dimensions, the eigenfunctions of the Fourier transform are
products of Hermite functions, one in each coordinate variable. Also see
Chapter 4, Section 7.2.

10.7. Interpolation of analytic families of operators.

The Riesz-Thorin interpolation theorem has a powerful generalization
due to E. M. Stein. (See Stein and Weiss {18, Chapter 5].) Let S = {z €
C:0 < Rez < 1} and let {T,}.cs be a family of operators. This family is
said to be admissible if given two functions f,g € L!(R™), the mapping

2 /R T.(f)gdo

is analytic on the interior of S and continuous on the boundary, and if there
exists a constant a <  such that
[ mngde
R"

e—alImz' log

is uniformly bounded for all z € S.
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Theorem 1.22. Let {T.} be an admissible family of operators, and suppose
that for 1 < po,p1,90,q1 < 00 and y € R,

1Tiyflloo < Mo fllpe  and 1 T14iyfllen < Mr(¥)lIfllpys
where for some b <

sup e *¥ log M;(y) < oo, j=1,2.
yER

Then for 0 < 8 < 1, Rez = 6 and p, q defined as in Theorem 1.19, there
exists a constant My such that

IT:fllq < Mpl|fll,-

10.8. Fourier transforms of finite measures.

As we noted above, if u is a finite Borel measure then f is a bounded,
continuous function. The collection of all such functions obtained in this
way is characterized by the following result.

Theorem 1.23. If h is a bounded, continuous function, then the following

are equivalent:

(1) h = i for some positive, finite Borel measure u;
(2) h is positive definite: given any f € L'(R™),

/ [ 4o - 1)) dsdy > 0
Rr JR"

This theorem is due to S. Bochner (Lectures on Fourier Integrals, Prince-
ton Univ. Press, Princeton, 1959; translated from Vorlesungen tiber Fouri-
ersche Integrale, Akad. Verlag, Leipzig, 1932). Also see Katznelson [10,
Chapter 6].






Chapter 2

The Hardy-Littlewood
Maximal Function

1. Approximations of the identity

Let ¢ be an integrable function on R™ such that [ ¢ = 1, and for ¢ > 0 define
¢:(z) = t™"¢(t"'z). Ast — 0, ¢; converges in S’ to &, the Dirac measure
at the origin: if g € S then

wle) = [ o a)e@)de = | s(@gta) de,
and so by the dominated convergence theorem,
lim ¢,(g) = 9(0) = 4(g)-
Since 6 * g = g, for g € S we have the pointwise limit
lim 6+ 9(2) = g(a).
Because of this we say that {¢; : t > 0} is an approximation of the identity.

The summability methods in the previous chapter can be thought of
as approximations of the identity. For Cesaro summability, ¢ = F; and
FR = ¢1/r- (See (1.24).) For Abel-Poisson summability, ¢ = P (see (1.30))
and for Gauss-Weierstrass summability, ¢ = W; (see (1.31)). We see from
the following result that these summability methods converge in LP norm.

Theorem 2.1. Let {¢;: ¢t > 0} be an approzimation of the identity. Then
lim 160 % £ = fllp =0
if f € LP, 1 <p< oo, and uniformly (i.e. when p = o) if f € Co(R™).

25
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Trnof. Because ¢ has integral 1,
bux f@) - f@) = [ s)lFle - 1)~ @ a,
Given € > 0, choose ¢ > 0 such that if |h| < 4,
fG+h)-f(
(Note that § depends on f.) For fixed 4, if ¢ is sufﬁmently small then

€
oY)l dy < i
/|y[26/t 19)l 41 fll
Therefore, by Minkowski’s inequality

e = Fllp < /| SIS+ )= 1Ol dy
y t
204l /iyw 16()] dy

< €.
O

As a consequence of this theorem, we know that there exists a sequence
{tx}, depending on f, such that t; — 0 and

lim ¢y, x f(z) = f(z) ae.

Hence, if lim ¢; * f(x) exists then it must equal f(z) almost everywhere. In
Section 4 we will study the existence of this limit.

2. Weak-type inequalities and almost
everywhere convergence

Let (X,u) and (Y,v) be measure spaces, and let T be an operator from
LP(X, i) into the space of measurable functions from Y to C. We say that
T is weak (p,q), g < 00, if

ey i >ap < (L)

and we say that it is weak (p,00) if it is a bounded operator from LP(X, u)
to L°°(Y,v). We say that T is strong (p, q) if it is bounded from L*(X, u)
to LI(Y,v).

If T is strong (p,q) then it is weak (p,q): if we let Ey = {y € Y :

ITf(y)| > A}, then
"a < ITIE ¢ (CUIRY"

- [ s
) E» E\ A

Tf
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When (X, u) = (Y,v) and T is the identity, the weak (p,p) inequality is the
classical Chebyshev inequality.

The relationship between weak (p, ¢) inequalities and almost everywhere
convergence is given by the following result. In it we assume that (X, pu) =
(Y,v).

Theorem 2.2. Let {T;} be a family of linear operators on LP(X,p) and
define

T"f(z) = sup |Tef ()],
If T* is weak (p,q) then the set
{f € LP(X,): Jim Tif (2) = f(z) a.e}
is closed in LP(X, ).
T* is called the maximal operator associated with the family {T%}.

Proof. Let {f,} be a sequence of functions which converges to f in LP(X, u)
norm and such that T; f,(z) converges to fn(z) almost everywhere. Then

p({z e X: lirgigp ITef(z) — f(z)] > A})
< pl{z € X : limsup|Ti(f ~ fa)(@) = (f = f)(2)] > A})

<u({z € X :T*(f — fo)(z) > A/2})
+p({z € X |(f — fa)(@)] > A/2})

q P
< (Bur-saln) + (317 1)

and the last term tends to 0 as n — co. Therefore,

p{ze X: lim sup |Tef(z) - f(z)| > 0})

<Y w{zex Hlimsup T f(z) - f(2)] > 1/k})

k=1 t=to

=0.

By the same technique we can also prove that the set
{feLP(X, u): tlir? T, f(z) exists a.e.}
—to
is closed in LP(X, u). It suffices to show that
p({z € X : limsup T, f(z) — litminthf(a:) > A}) =0,
t—to —lo
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and this follows as in the above argument since

limsup T; f(z) — Ii{n%nszf(x) < 2T*f(z).
—to

t—tg

(If Ty f (z) is complex, we apply this argument to its real and imaginary parts
separately.)

Since for f € § approximations of the identity converge pointwise to f,
we can apply this theorem to show pointwise convergence almost everywhere
for fe LP, 1 < p < o0, or for f € Cp if we can show that the maximal
operator sup;sq |¢: * f(x)| is weakly bounded.

3. The Marcinkiewicz interpolation theorem

Let (X, 1) be a measure space and let f : X — C be a measurable function.
We call the function ay : (0, 00) — [0, 00], given by

ar(A) = p({z € X : [f(z)| > A}),

the distribution function of f (associated with u).

Proposition 2.3. Let ¢ : [0,00) — [0,00) be differentiable, increasing and
such that ¢(0) = 0. Then

Jots@bau= [~ 6 0asn)ir
X 0

To prove this it is enough to observe that the left-hand side is equivalent

I£(2)]
'(A)drd
/X/O #¢'(A) drdu

and then change the order of integration. If, in particular, ¢(A) = AP then

(2.1) |uw=p4mv4wuwx

to

Since weak inequalities measure the size of the distribution function, this
representation of the LP norm is ideal for proving the following interpolation
theorem, which will let us deduce LP boundedness from weak inequalities.
It applies to a larger class of operators than linear ones (note that maximal
operators are not linear): an operator T' from a vector space of measurable
functions to measurable functions is sublinear if

IT(fo + f1)(2)] < |Tfo(z)| + T fir(z)],
ITAf)l = MITf]l, AeC.
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Theorem 2.4 (Marcinkiewicz Interpolation). Let (X, u) and (Y, v) be mea-
sure spaces, 1 < pg < p1 < oo, and let T be a sublinear operator from
LPo(X, ) + LP (X, p) to the measurable functions on'Y that is weak (po, po)
and weak (p1,p1). Then T is strong (p,p) for po <p < p1.

Proof. Given f € L?, for each A > 0 decompose f as fg + f1, where

fo = fX{zir@>er}s
f1 = fX{z5@)i<er)s

the constant ¢ will be fixed below. Then fo € LP(x) and fi € LP'(u).
Furthermore,

ITf(@)| < |T fo(@)| + IT fr(z)l,

ars(A) < arg(A/2) + ary, (A /2).

We consider two cases.

Case 1: p; = 0o. Choose ¢ = 1/(2A;), where A is such that |Tg||c <
A1llgllco- Then agy, (A/2) = 0. By the weak (pg, po) inequality,

arp(M/2) < (2‘4" |lfo||po> :

hence,

ITFIE < p / P10 (2 400 / (@) [P dyxd
{z:|f(z)|>cA}

|f()i/e
=paop [ 1@ [T e an
=——(24 2A1)P7P fIIB.
L apeay I
Case 2: p1 < 00. We now have the pair of inequalities

2Az P ]
an,»(/\/2)S(/\ vll,,i> , 1=0,1.

From these we get (arguing as above) that

ITfIE < / NP=1-P0 (2 A )P0 / | (@) dpu A
0 {z:|f(z)|>cA}

+p/ /\”_l_p‘(ZAl)p‘/ |f ()P dpdX
0 {z:lf (z)I<cA}

Py 4
_ p2P  Ag 4 p2rr AR 1|1
P —Po cP—Po P1—D cP—pP1 P
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We can write the strong (p,p) norm inequality in this theorem more
precisely as

22) TSl <2p1fp( L, ! )l/pAl-"A"nfn
' P= pP—po  Pp1—p 0 e
where

l=£+1_9, 0<6<l.

D D1 Do

When p; = oo this is the constant which appears in the proof; when p; < co
it is enough to take ¢ such that (2A4¢c)? = (24;¢)"* and then simplify.

4. The Hardy-Littlewood maximal function

Let B, = B(0,r) be the Euclidean ball of radius r centered at the origin.
The Hardy-Littlewood maximal function of a locally integrable function f
on R” is defined by

1
(23) M) =sup o= [ 1f(@ -l
>0 IBTl B
(This can equal +00.) If we let ¢ = |B;|~!xp,, then (2.3) coincides for non-
negative f with the maximal operator associated with the approximation of
the identity {¢:} as in Theorem 2.2.

Sometimes we will define the maximal function with cubes in place of
balls. If Q. is the cube [—r,7]*, define

1
2.4 M'xzsu—/ flz —y)|dy.
(2.4) f@) =swp o | 1@ vldy
When n = 1, M and M’ coincide; if n > 1 then there exist constants ¢, and
Ch, depending only on n, such that

(2.5) cnM'f(z) < Mf(z) < CoM'f(z).

Because of inequality (2.5), the two operators M and M’ are essentially
interchangeable, and we will use whichever is more appropriate, depending
on the circumstances. In fact, we can define a more general maximal function

" _ 1
(2.6) M (@) = sup /Q 1F @)l dy,

where the supremum is taken over all cubes containing z. Again, M" is
pointwise equivalent to M. One sometimes distinguishes between M’ and
M" by referring to the former as the centered and the latter as the non-
centered maximal operator. Alternatively, we could define the non-centered
maximal function with balls instead of cubes.
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Theorem 2.5. The operator M is weak (1,1) and strong (p,p), 1 < p < oo.

We remark that by inequality (2.5), the same result is true for M’ (and
also for M").

It is immediate from the definition that

(2.7) M flloo < Il flloos

so by the Marcinkiewicz interpolation theorem, to prove Theorem 2.5 it will
be enough to prove that M is weak (1,1) Here we will prove this when
n = 1; we will prove the general case in Section 6 In the one-dimensional
case we need the following covering lemma whose simple proof we leave to
the reader.

Lemma 2.6. Let {I,}aca be a collection of intervals in R and let K be a
compact set contained in their union. Then there exists a finite subcollection
{1} such that

KCUIj, and ZXIJ(:::)SZ z€R
J J

Proof of Theorem 2.5 for n=1. Let Ey, = {z € R : Mf(z) > A}. If
z € E) then there exists an interval I, centered at  such that
1
(2.8) — [ |fl>A
| Jr,
Let K C E) be compact. Then K C |J I, so by Lemma 2.6 there exists
a finite collection {I;} of intervals such that K C |J;I; and }_; x1; < 2.

Hence.
1 1 2
IKI< ) I1<)> [ Ifl<< x| f1 < S £l

the second inequality follows from (2 8). Since this inequality holds for every
compact K C E), the weak (1, 1) inequality for M follows immediately. O

Lemma 2.6 is not valid in dimensions greater than 1, and though one
could replace it with similar results, this is not the approach we are going
to take here. (For such a proof, see Section 8.6.)

The importance of the maximal function in the study of approximations
of the identity comes from the following result

Proposition 2.7. Let ¢ be a function which is positive, radial, decreasing
(as a function on (0,00)) and integrable. Then

sup ¢ * f(z)| < gl M f(z).
>0
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Proof. If we assume in addition to the given hypotheses that ¢ is a simple
function, that is, it can be written as

$(z) =) _a,xz, (z)
J
with a; > 0, then
1
¢x f(z) =3 o|Brylip—xs, * f(2) < |# M f ()
j T

since [|¢lly = - a5|By;].

An arbitrary function ¢ satisfying the hypotheses can be approximated
by a sequence of simple functions which increase to it monotonically. Any
dilation ¢, is another positive, radial, decreasing function with the same
integral, and it will satisfy the same inequality. The desired conclusion
follows at once. O

Corollary 2.8. If |¢(z)| < ¥(z) almost everywhere, where 1 is positive,
radial, decreasing and integrable, then the mazimal function sup, |¢, * f(z)|
is weak (1,1) and strong (p,p), 1 < p < c0.

This is an immediate consequence of Proposition 2.7 and Theorem 2.5.
If we combine this corollary with Theorem 2.2 we get the following result.

Corollary 2.9. Under the hypotheses of the previous corollary, if f € LP,
1<p<oo,orif feCy, then

}i_{radu*f(x) = (/¢> - f(z) a.e.

In particular, the summability methods discussed in Chapter 1, Section 9
(Cesaro, Abel-Poisson and Gauss- Weierstrass summability), each converge
to f(z) almost everywhere if f is in one of the given spaces.

Proof. Since we have convergence for f € S, by Theorem 2.2 we have
convergence for f € S = LP (or f € Cy if p = 00). The Poisson kernel (1.30)
and the Gauss-Weierstrass kernel (1.31) are decreasing; the Féjer kernel
(1.24) is not but Fi(z) < min(1, (rz)~2). a

5. The dyadic maximal function

In R™ we define the unit cube, open on the right, to be the set [0,1)", and
we let Qp be the collection of cubes in R™ which are congruent to [0,1)™ and
whose vertices lie on the lattice Z™. If we dilate this family of cubes by a
factor of 275 we get the collection Q, k € Z; that is, Qx is the family of



5. The dyadic maximal function 33

cubes, open on the right, whose vertices are adjacent points of the lattice
(27%Z)". The cubes in |J, Qk are called dyadic cubes.

From this construction we immediately get the following properties:

(1) given z € R™ there is a unique cube in each family Qx which contains
it;

(2) any two dyadic cubes are either disjoint or one is wholly contained
in the other;

(3) a dyadic cube in Q is contained in a unique cube of each family Q;,
j < k, and contains 2" dyadic cubes of Q1.

Given a function f € L1 _(R™), define

loc
Biw = 3 (ﬁ /Q f) xa(@);

Ey f is the conditional expectation of f with respect to the o-algebra gener-
ated by Q. It satisfies the following fundamental identity: if 2 is the union

of cubes in Q, then
[Bs=[ 1.
Q Q

Eif is a discrete analog of an approximation of the identity. The fol-
lowing theorem makes this precise; first, define the dyadic maximal function
by

(2.9) Maf(z) = sup |Exf(x)]-

Theorem 2.10.

(1) The dyadic mazimal function is weak (1,1).
(2) If fe L., klinoloEkf(z) = f(z) a.e.

Proof. (1) Fix f € L!; we may assume that f is non-negative: if f is real, it
can be decomposed into its positive and negative parts, and if it is complex,
into its real and imaginary parts.

Now let
{z € R™: Myf(z) > A} = %,
k

where
Qk={$ERn:Ekf(:L‘) > A and Ejf(:l:) < )\lfj <k};

that is, x € Qy if Exf(x) is the first conditional expectation of f which is
greater than . (Since f € L, Exf(x) — 0 as k — —o0, so such a k exists.)
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The sets §; are clearly disjoint, and each one can be written as the union
of cubes in Q. Hence,

{z € R : Myf(z) > A} = kal
<z /Ekf
:sz: Qkf

< Lifih.

(2) This limit is clearly true if f is continuous, and so by Theorem 2.2 it
holds for f € L!. To complete the proof, note that if f € L} then fxg € L!
for any Q € Qp. Hence, (2) holds for almost every z € @, and so for almost
every ¢ € R”. O

This proof uses a decomposition of R™ which has proved to be extremely
useful. It is called the Calder6n-Zygmund decomposition and we state it
precisely as follows.

Theorem 2.11. Given a function f which is integrable and non-negative,
and given a positive number ), there exists a sequence {Q;} of disjoint dyadic
cubes such that

(1) f(z) < X for almost every = ¢ UQj,'
J
IUQJ-

A<
(3) IQJI o f<

< Liflh

Proof. As in the proof of Theorem 2.10, form the sets ;. and decompose
each into disjoint dyadic cubes contained in Qg; together, all of these cubes
form the family {Q;}.

Part (2) of the theorem is then just the weak (1,1) inequality of Theorem
2.10.

Ifz & |J; Q; then for every k, Ei f(z) < A, and so by part (2) of Theorem
2.10, f(z) < A at almost every such point.

Finally, by the definition of the sets ), the average of f over Q; is
greater than A; this is the first inequality in (3). Furthermore, if Q; is the
dyadic cube containing Q; whose sides are twice as long, then the average
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of f over QJ- is at most A. Therefore,

1 1Qs

Q5 Jo, S 1iligy Jo, T <7

6. The weak (1,1) inequality for the maximal
function

We are now going to use Theorem 2.10 to prove Theorem 2.5. In fact, it
is an immediate consequence of the following lemma and inequality (2.5).
(Recall that M’ is the maximal operator on cubes defined by (2.4).)

Lemma 2.12. If f is a non-negative function, then

Hx € R™ : M'f(z) > 4"A\}| < 2"|{z € R™ : Myf(z) > A}

Given this lemma, by the weak (1, 1) inequality for My proved in Theo-
rem 2.10,

n
o € R M'f(z) > N)| < 2'l{z € R : Myf(a) > 47X} < Il
(Since M'f = M'(|f|), we may assume that f is non-negative.)

Proof of Lemma 2.12. As before, we form the decomposition

{z € R™: Myf(z) > A} = Q-
i

Let 2Q; be the cube with the same center as J; and whose sides are twice
as long. To complete the proof it will suffice to show that

{z eR™: M'f(z) > 4"} | J2Q;.
J
Fix z ¢ |J; 2Q; and let Q be any cube centered at z. Let I(Q) denote
the side length of Q, and choose k € Z such that 25-1 < [(Q) < 2*. Then
Q@ intersects m < 2" dyadic cubes in Qy; call them R;, Ry,..., Ry,. None

of these cubes is contained in any of the @;’s, for otherwise we would have
T € U]- 2Q;. Hence, the average of f on each R, is at most A, and so

i/fzizf 2kn L[ rcommr<ama
Rl Jo~ QI 4% Jonr, !Ql [Ri] Jr,
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As a consequence of the weak (1,1) inequality and Theorem 2 2 we get
a continuous analog of the second half of Theorem 2.10.

Corollary 2.13 (Lebesgue Differentiation Theorem). If f € LL _(R") then

lim Flrl/Br flz —y)dy = f(z) ae.

r—0+

From this we see that |f(z)| < M f(z) almost everywhere. The same is
true if we replace M by M’ or M".

We can make the conclusion of Corollary 2.13 sharper
(2 10) hm |B|/ |f(z—y)— f(z)|dy=0ae.
This follows immediately from the fact that

I_B}T'/B If(z —y) - f(z)|dy < Mf(z) + |f(z)]

The points in R™ for which limit (2 10) equals 0 are called the Lebesgue
points of f. If z is a Lebesgue point and if {B;} is a sequence of balls such
that By D By D - and [); B; = {z} (note that the balls need not be
centered at x), then

1
tim = [ £ = fi@)
700 | Bj| JB,
This follows immediately from the inclusion B; C B(x, 2r;), where r; is the

radius of B;j. A similar argument shows that the set of Lebesgue points of
f does not change if we take cubes instead of balls.

The weak (1,1) inequality for M is a substitute for the strong (1,1)
inequality, which is false. In fact, it never holds, as the following result
shows

Proposition 2.14. If f € L! and is not identically 0, then M f & L!

The proof is simple since f is not identically 0, there exists R > 0 such

that
/ |fl >e>0.
Bgr

Now if |z| > R, Bg C B(z,2|z|), so

1
Mf(x)Zw/ lf|_2—nl_zl‘n~

Nevertheless, we do have the following
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Theorem 2.15. If B is a bounded subset of R™, then
J s <upi+c [ it i,

where log™ t = max(logt, 0)

Proof.
/Mf§2/ {z € B Mf(z)>2A}d\
B 0
<2\B|+ 2/ {z B Mf(z)> 2)}| dA
1
Decompose f as fi + fo. where fi = fx(z|f(z)}>2) @and fo = f — fi Then

{z€B: Mf(z)>2\} Cc{xre B -Mfi(z) > A}

Hence,

B: M 22 dA dx d)\
/1|{ze f(z) > 22} </ /{I,ﬂw}”"””m

max(|f(2)l.1) gy
<C’/ If ( / d = da

— +
=c [ 17@)I1og* (@)l .

7. A weighted norm inequality

Theorem 2.16. If w is a non-negative, measurable function and 1 < p <
00, then there exists a constant Cp, such that

M f(z)Pw(z) dx < Cp/ |f(z)PMw(z) dz.
R Rn

Furthermore,

G
(211) /{mm COEES /R 1 (@) Muw() dz

Proof. It will suffice to show that [|M f|| () < || fllL=(rw) and that the
weak (1,1) inequality holds, the strong (p,p) inequality then follows from
the Maicinkiewicz interpolation theorem If Mw(z) = 0 for any x then
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w(z) = 0 almost everywhere and there is nothing to prove. Therefore, we
may assume that for every z, Mw(z) >0 If a > || || o(pw) then

/ Muw(z)dz = 0,
{z [f(z)|>a}

and so |[{z € R™ - |f(z)| > a}| = 0; that is, |f(x)| < a almost everywhere
From this it follows that M f(z) < a ae., so ||Mf||p<@w) < a. Hence,
M fll Lo wy < N Fll oo (Ma)-

To prove the weak (1, 1) inequality we may assume that f is non-negative
and f € L'(R™). (If f € L'(Mw) then f; = fxp(,; is a sequence of
integrable functions which increase pointwise to f.) If {Q;} is the Calderén-
Zygmund decomposition of f at height A > 0, then as we showed in the proof
of Lemma 2.12,

{zeR™: M'f(z) > 4"A} c | J2Q;
J
hence,

d d

w(z) 1:5;/2%10(1:) z

"L L
Ly L, v

< 2;%:/% fly) ([?cljﬂ o, w(z) dl‘) dy

"C "
< QT/W. fy) M w(y) dy.

/{z M'f(z)>4nA}

Since M"w(y) < C,Mw(y), we get the desired inequality. a

If w is such that Mw(z) < w(z) ae., then these inequalities hold with
the same weight w on both sides. Functions which satisfy this condition are
called A; weights, and we will consider them in greater detail in Chapter 7.

8. Notes and further results

8.1. References.

The maximal function for n = 1 was introduced by G. H Hardy and
J. E. Littlewood (A mazimal theorem with function-theoretic applications,
Acta Math. 54 (1930), 81-116), and for n > 1 by N Wiener (The ergodic
theorem, Duke Math. J. 5 (1939), 1-18). In their article, Hardy and Little-
wood first consider the discrete case, about which they say: “The problem
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is most easily grasped when stated in the language of cricket, or any other
game in which a player compiles a series of scores of which an average is
recorded.” Their proof, which uses decreasing rearrangements (see 8.2 be-
low) can be found in Zygmund [21]. Our proof follows the ideas of Calderén
and Zygmund (On the existence of certain singular integrals, Acta Math. 88
(1952), 85-139). The decomposition which bears their name also first ap-
peared in this paper. The method of rotations, discussed in Chapter 4, lets
us deduce the strong (p,p) inequality for n > 1 from the one-dimensional
result. For a discussion of questions related to Theorem 2.2, and in particu-
lar the necessity of the condition in that theorem, see de Guzman [7]. The
Marcinkiewicz interpolation theorem was announced by J. Marcinkiewicz
(Sur Uinterpolation d’opérations, C. R. Acad. Sci. Paris 208 (1939), 1272-
1273). However, he died in World War II and a complete proof was finally
given by A. Zygmund (On a theorem of Marcinkiewicz concerning inter-
polation of operations, J. Math. Pures Appl. 34 (1956), 223—248). Both
Marcinkiewicz interpolation and Riesz-Thorin interpolation in Chapter 1
have been generalized considerably; see, for example the book by C. Ben-
nett and R. Sharpley (Interpolation of Operators, Academic Press, New
York, 1988). The weighted norm inequality for the maximal operator is
due to C. Fefferman and E. M. Stein (Some mazimal inequalities, Amer. J.
Math. 93 (1971), 107-115).

8.2. The Hardy operator, one-sided maximal functions, and de-
creasing rearrangements of functions.

Given a function g on R* = (0,00) the Hardy operator acting on g is
defined by

1 t
Tg(t) = z/o g(s)ds, teRT,

If g € L}(R") is non-negative, then, since T'g is continuous, one can show
that

(2.12) EQ\) = % /E IRCCLS

where E(\) = {t € R* : Tg(t) > \}. From this and (2.1) we get ||Tg|l, <
?'llgllp, 1 < p < co. Other proofs of this result and generalizations of the
operator can be found in the classical book by G. H. Hardy, J. E. Littlewood
and G. Pdlya (Inequalities, Cambridge Univ. Press, Cambridge, 1987, first
edition in 1932), or in Chapter 2 of the book by Bennett and Sharpley cited
above.
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For a function f on R, the one-sided Hardy-Littlewood maximal func-
tions are defined by

1 t+h 1 t
+ —_ = - — il
M f(O) = sup / F(e)lds and M~f()) =sup /t_hlf(s)lds-

The maximal function as defined by Hardy and Littlewood corresponds to
M~ for functions on R™ (with 0 < h < ¢ in the definition). When [f] is
decreasing this maximal function coincides with the Hardy operator acting
on | fl.

If f is a measurable function on R", we can define a decreasing function
f* on (0,00), called the decreasing rearrangement of f, that has the same
distribution function as f:

f*(t) =inf{A:ap(A) < t}.

Because f and f* have the same distribution function, by (2.1) their LP
norms are equal, as well as any other quantity which depends only on their
distribution function. (Cf. Section 8.3 below.) The action of the Hardy
operator on f* is usually denoted by f**.

Hardy and Littlewood showed that for functions on R*,
(213) o M~ 1() > M} < [{z: () > A,

so the weak (1,1) and strong (p,p) inequalities for M~ follow from the
corresponding ones for T'.

A beautiful proof of the weak (1,1) inequality for M* was given by
F. Riesz as an application of his “rising sun lemma” (Sur un théoréme du
mazimum de MM. Hardy et Littlewood, J. London Math. Soc. 7 (1932),
10-13). Given a function F on R, a point z is a shadow point of F if there
exists y > z such that F(y) > F(z). The set of shadow points of F is
denoted by S(F). '

Lemma 2.17. Let F be a continuous function such that

lim F(z) =-oc0 and lim F(z)= +oo.
T—+00 I——00
Then S(F) is open and can be written as the disjoint union \J;(a;,b;) of
finite open intervals such that F(a;) = F(b;).

Given f € L'(R) and A > 0, define F(z) = [;|f(t)|dt — Az. Then
E(A) ={z: M* f(z) > A} equals S(F). Using Lemma 2.17 one can deduce
that

BN =5 [ 1@l
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which is similar to (2.12) for the Hardy operator. The strong (p, p) inequality
now follows as before with constant p’ (which is sharp). We leave the details
of the proof of this and of Lemma 2.17 to the reader.

An inequality similar to (2.13) holds for the maximal operator acting on
functions on R"; in fact, we have the following pointwise inequality: there
exist positive constants ¢, and C, such that

cn(M)"(t) < f(t) < Ca(Mf)*(t), teR™.

The left-hand inequality is due to F. Riesz; the right-hand inequality is due
to C. Herz (n = 1) and C. Bennet and R. Sharpley (n > 1). See Chapter 3
of the above-cited book by these authors for a proof and further references.

8.3. The Lorentz spaces LP9.

Let (X, u) be a measure space. LP?(X) denotes the space of measurable
functions f which satisfy

00 1/q
e = (2 [TErr@rd) " <oo

when 1 < p < o0, 1< g < o0, and
£ lpco = supt'/?*(t) < oo
t>0
when 1 < p < 00. When p =g,
I flloe = 1" llo = lIfll

and we recover LP. In general, however, || - |54 is not a norm since the
triangle inequality only holds when 1 < ¢ < p < o0 or p = ¢ = oo. But
when 1 <p<ooand 1< gq < oo, if we replace f* in the definition of || fl|p,q
with f**, we get a quantity which is equivalent to || f||5,, and which defines
a norm.

If 1 < g2 then [[fllpgs < 1fllpgs, s0 P C LP92.
An operator T is weak (p,p) precisely when

IT fllp.co < Cllflp-

The Marcinkiewicz interpolation theorem can be generalized to these spaces;
this lets us, for example, give a version of the Hausdorf-Young inequality
which is stronger than Corollary 1.20: if f € LP(R"), 1 < p < 2, then
f € LP'? and there exists a constant B, such that

11l < Bollfllp-

For more information on decreasing rearrangements and the LP9 spaces, see
Stein and Weiss [18, Chapter 5] and the book by Bennett and Sharpley
cited above. Also see this latter book for more on interpolation theorems,
particularly the so-called real method of interpolation which is well suited
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Lorentz spaces. These spaces were introduced by G. G. Lorentz in two
papers (Some new functional spaces, Ann. of Math. 51 (1950), 37-55, and
On the theory of spaces A, Pacific J. Math. 1 (1951), 411-429).

8.4. LlogL.

In the proof of Proposition 2.14, the integrability of M f failed at infin-
ity, and did not exclude local integrability. However, the example f(z) =
27 (log £) “%x(0,1/2] shows that even local integrability can fail. A partial
converse of Theorem 2.15 is true and characterizes when M f is locally in-
tegrable.

Theorem 2.18. If f is an integrable function supported on a compact set
B, then M f € L*(B) if and only if flog™ f € L}(B).

This is due to E. M. Stein (Note on the class Llog L, Studia Math. 32
(1969), 305-310); a proof can also be found in Garcia-Cuerva and Rubio de
Francia [6, p. 146].

At the heart of the proof is a stronger version of the weak (1, 1) inequality
and a “reverse” weak (1,1) inequality for the maximal function:

@U)  HeeRMi@>N<] [ /(@) dz,
A Jz15@)1>02)
(2.15) Hz e R™: Mf(z) > \}| > § If(z)| dz.
{z:lf(z)I>A}
Inequality (2.14) follows from the weak (1,1) inequality applied to f; =
FX{z:|f(z)|>r/2); inequality (2.15) follows from the Calderén-Zygmund de-
composition if we replace M by M".

In this and related problems it would be useful to consider functions f
such that flog™ f € L' as members of a Banach space. Unfortunately, the
expression [ flog" f does not define a norm. One way around this is to
introduce the Luxemburg norm: given a set 2 C R”, define

210 Wl =inf {3>0: [ Lot (2N 0z <1},

By using this we can strengthen the conclusion of Theorem 2.18 to the fol-
lowing inequality: |[Mf||L1(B) < C|[flle1og (B)- (See Zygmund [21, Chap-
ter 4].)

By replacing the function tlog*t in (2.16) by any convex, increasing
function ®, we get a class of Banach function spaces, L®(§2), which gener-
alize the LP spaces and are referred to as Orlicz spaces. These have a rich
theory; for further information, consult the books by M. A. Krasnosel’skii
and Ya. B. Rutickii, (Conver functions and Orlicz spaces, P. Noordhoff,




8. Notes and further results 43

Groningen, 1961), and M. M. Rao and Z. D. Ren, (Theory of Orlicz Spaces,
Marcel Dekker, New York, 1991).

8.5. The size of constants.

In the proofs in this chapter, the constants which appear in the weak
(1,1) and strong (p, p) inequalities, 1 < p < oo, for M and M’ are of expo-
nential type with exponent n. For the strong (p,p) inequality, the method
of rotations (see Corollary 4.7) gives a better constant of the form Cpn for
M. Furthermore, one can show that there exist constants Cp, independent
of n, such that

IMfllp < Collfllp 1<p<oo.

This result is due to E. M. Stein, and the proof appeared in an article by
E. M. Stein and J.-O. Strémberg (Behavior of mazimal functions in R™ for
large n, Ark. Mat. 21 (1983), 259-269); also see E. M. Stein, Three varia-
tions on the theme of maximal functions (Recent Progress in Fourier Anal-
ysis, 1. Peral and J. L. Rubio de Francia, eds., pp. 229-244, North-Holland,
Amsterdam, 1985). A partial generalization of this result is possible: let B
be a convex set which is symmetric about the origin and define

1
Mpf(z) = sup—/ T —y)|dy.
si@=swp o | If@-vldy
Then if p > 3/2 there exists a constant C, independent of B and n such
that

"MBf”p < Cp"f”p-

For the weak (1,1) inequality, the best constant known for M is of order n.
(See the article by Stein and Strémberg cited above.)

For the non-centered maximal function defined by (2.6) (but with balls
instead of cubes), the best constant in the strong (p,p) inequality must
grow exponentially in n. See L. Grafakos and S. Montgomery-Smith (Best
constants for uncentered mazximal functions, Bull. London Math. Soc. 29
(1997), 60-64).

We note that when n = 1 the best constants are known for the one-sided
and for the non-centered maximal operator M" but not for M. In the case
of the weak (1,1) inequality for M”, one can use Lemma 2.6 to get C = 2,
and the function f(t) = xjo,1) shows this is the best possible. For the strong
(p,p) inequality for M", see the article by Grafakos and Montgomery-Smith
cited above. For lower and upper bounds on the weak (1,1) constants for M,
see the article by J. M. Aldaz (Remarks on the Hardy-Littlewood mazimal
function, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1-9).
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8.6. Covering lemmas.

A standard approach to proving that the maximal function in R" is weak
(1,1) is to use covering lemmas. Here we give two; the first is a Vitali-type
lemma due to N. Wiener (in the paper cited above). If B = B(z,r) and
t > 0, then we let tB = B(z, tr).

Theorem 2.19. Let {Bj}jes be a collection of balls in R™. Then there
exists an at most countable subcollection of disjoint balls {Bx} such that

U Bj C USBk

j€TJ k

The second is due independently to A. Besicovitch and A. P. Morse; for a
proof and further references, see the book by M. de Guzman ( Differentiation
of Integrals in R™, Lecture Notes in Math. 481, Springer-Verlag, Berlin,
1985).

Theorem 2.20. Let A be a bounded set in R™, and suppose that {Bz}zca
is a collection of balls such that By = B(z,7z), 7z > 0. Then there exists an
at most countable subcollection of balls {B;} and a constant Cp, depending
only on the dimenston, such that

ACUBJ- and ngj(x)g(]n.
J J

The same result holds if balls are replaced by cubes; more generally, the
point = need not be the center of the ball or cube but must be uniformly
close to the center.

Using the Besicovitch-Morse lemma. we can extend our results for the
maximal function to LP spaces with respect to other measures. Given a
non-negative Borel measure u, define the maximal function

M,f(z) = S E Ja |f(z — y)| du(y).

(If u(B,) = 0, define the u-average of f on B, to be zero.) Then one can
show that M, is weak (1,1) with respect to u; hence, by interpolation it is
bounded on LP(u), 1 < p < oo.

Note that if we define ML as the maximal operator with respect to
cubes, then M,, and ML need not be pointwise equivalent unless p satisfies
an additional doubling condition: there exists C such that for any ball
B, u(2B) < Cu(B). Furthermore, if we define the non-centered maximal
operator M,;, then this need not be weak (1,1) if n > 1 unless u satisfies
a doubling condition. In this case the weak (1,1) inequality follows from



8. Notes and further results 45

Wiener’s lemma; when n = 1, Lemma 2.6 can be applied even to non-
doubling measures. An example of x such that Mj; is not weak (1, 1) is due
to P. Sjogren (A remark on the mazimal function for measures on R"™, Amer.
J. Math. 105 (1983), 1231-1233). For certain kinds of measures a weaker
hypothesis than doubling implies that M, is weak (1,1); see, for example,
the paper by A. Vargas (On the mazimal function for rotation invariant
measures in R™, Studia Math. 110 (1994), 9-17).

8.7. The non-tangential Poisson maximal function.

Given f € LP(R™), u(z,t) = P, * f(z) defines the harmonic extension of
f to the upper half-space R’f] = R" x (0,00), and lim;_,g P; * f(z) is the
limit of this function on the boundary as we approach z “vertically”, that
is, along the line perpendicular to R™. More generally, one can consider a
non-tangential approach: fix a > 0 and let

Ta(z) = {(y,t) : ly — 2| < at}
be the cone with vertex £ and aperture a. We can then ask whether

lim u(y,t) = f(z ae. T € R™.

(y:t)—(x,0) ®.) (@)

(y,t)€Ta(z)
Since this limit holds for all z if f is continuous and has compact support,
it suffices to consider the maximal function

ug(z) = sup fu(y,t)l,
(y.t)€Ta(z)

so as to apply Theorem 2.2. But one can show that there exists a constant
C,, depending on a, such that

ug(z) < CaM f(z),
and so u, is weak (1,1) and strong (p,p), 1 < p < oo.

These results can be generalized to “tangential” approach regions, pro-
vided the associated maximal function is weakly bounded. For results in this
direction, see, for example, the articles by A. Nagel and E. M. Stein (On
certain mazimal functions and approach regions, Adv. in Math. 54 (1984),
83-106) and D. Cruz-Uribe, C. J. Neugebauer and V. Olesen (Norm in-

equalities for the minimal and mazimal operator, and differentiation of the
integral, Publ. Mat. 41 (1997), 577-604).

8.8. The strong maximal function.

Let R(h1,... ,hn) = [h1,h1] X -+- X [~hn, hy). If f € LL , define the
strong maximal function of f by

M,f(z)= sup !

- flz—y)|dy.
By hn>0 [R(RL, -+, hn) R(hl,...,h,,)| ( Jldy
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Then M, is bounded on LP(R™), p > 1; this is a consequence of the one-
dimensional result. However, M; is not weak (1,1): the best possible in-
equality is

{z € R™: Msf(z) > A} < C/I—@ (1 + log* @)n_l dz.

This result is due to B. Jessen, J. Marcinkiewicz and A. Zygmund (Note on
the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234).
A geometric proof was given by A. Cérdoba and R. Fefferman (A geometric
proof of the strong mazimal theorem, Ann. of Math. 102 (1975), 95-100);
also see the article by R. J. Bagby (Mazimal functions and rearrangements:
some new proofs, Indiana Univ. Math. J. 32 (1983), 879-891).

The analog of the Lebesgue differentiation theorem,

1
fim —-——/ flz—y)dy = f(z) ae.
max(he)—0 [R(h1, - ko)l JR(ha . o) (z-y)dy = f(z)

is false for some f € L!, but is true if f(1+log* |f]|)"? is locally integrable,

and in particular if f € L? _ for some p > 1.

If in the definition of M, we allow rectangles (that is, parallelepipeds)
with arbitrary orientation (and not just with edges parallel to the coordinate
axes), then the resulting operator is not bounded on any LP, p < oo, and
the associated differentiation theorem does not hold even for f bounded.

For these and other problems related to differentiation of the integral see
de Guzman [7], the book by the same author cited above, and the monograph
by A. M. Bruckner (Differentiation of integrals, Amer. Math. Monthly 78
(1971), Slaught Memorial Papers, 12).

8.9. The Kakeya maximal function.

Given N > 1, let Ry be the set of all rectangles in R™ with n — 1 sides
of length h and one side of length Nk, h > 0. The Kakeya maximal function
is defined by

1
Knf@ = swp o [ 1.
zeRery Rl /R
Since each rectangle in R v is contained in a ball of radius ¢, N h, the Kakeya
maximal function is bounded pointwise by the Hardy-Littlewood maximal
function:
(2.17) Knf(z) < CoN™ *Mf(x).
It follows immediately that Ky is bounded on LP, 1 < p < oo.

An important problem is to determine the size of the constants as func-
tions of N for the L? estimates for the Kakeya maximal function. Inequality
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(2.17) gives the trivial estimate N™~! for the constant in the weak (1,1) in-
equality, and it is clear that in L>, Ky has norm 1. Interpolating between
these values we get

N fllp < CaN=D2| 1, 1< p<oo.

It is conjectured that the constant can be improved to a power of log NV
when p = n, which, again by interpolation, would give the following bounds:

(1) if p > n then |[Kn fll, < Cn(log N)°| fl|p;
(2) if 1 < p < nthen |[Knfllp < CaNYP1(log N)o?|| f]|-

This conjecture is closely related to two other problems: the Hausdorff
dimension of the Kakeya set—a set with Lebesgue measure zero which con-
tains a line segment in each direction (see Stein {17, p. 434]); and the bound-
edness properties of Bochner-Riesz multipliers (see Chapter 8, Sections 5
and 8.3).

This conjecture has been proved completely only when n = 2: see
the paper by A. Cérdoba (The Kakeya mazimal function and the spheri-
cal summation multipliers, Amer. J. Math. 99 (1977), 1-22). In this paper
he also discussed the connection with Bochner-Riesz multipliers. Cérdoba
later proved the result in all dimensions when 1 < p < 2; see A note on
Bochner-Riesz operators (Duke Math. J. 46 (1979), 505-511). M. Christ,
J. Duoandikoetxea and J. L. Rubio de Francia (Mazimal operators related to
the Radon transform and the Calderon-Zygmund method of rotations, Duke
Math. J. 53 (1986), 189-209) extended the range to 1 < p < (n + 1)/2.

A great deal of activity on this problem has been spurred by the work of
J. Bourgain (Besicovitch type mazimal operators and applications to Fourier
analysis, Geom. Funct. Anal. 1 (1991), 147-187). In this paper he proved
the conjecture for 1 < p < (n+1)/2 + €5, where €, is given by an inductive
formula (for instance, e3 = 1/3). T. Wolff (An improved bound for Kakeya
type mazimal functions, Rev. Mat. Iberoamericana 11 (1995), 651-674) im-
proved thisto 1 < p < (n+2)/2. Recently, J. Bourgain (On the dimension of
Kakeya sets and related mazrimal inequalities, Geom. Funct. Anal. 9 (1999),
256-282) has shown that there exists ¢ > 1/2 such that the conjecture is
true for p < en if n is large enough.

For a discussion of recent results on this problem and its connection with
the Kakeya set, see the survey article by T. Wolff (Recent work connected
with the Kakeya problem, Prospects in Mathematics, H. Rossi, ed., pp. 129-
162, Amer. Math. Soc., Providence, 1999).






Chapter 3

The Hilbert Transform

1. The conjugate Poisson kernel

Given a function f in S(R), its harmonic extension to the upper half-plane
is given by u(z,t) = P, * f(z), where P, is the Poisson kernel. We can also
write (see (1.29))

o0 . ) 0 A B
u(z) = /0 f(é‘)ezﬂ'lz-f d¢ +/- f(5)627nz-§ de,
where z = z + it. If we now define
* £ 3 0 ~ Py
iv(z) =[) f(§)62"”'5 d¢ _\/_ f({:)eZmz{ de,

then v is also harmonic in R and both u and v are real if f is. Furthermore,
u + 1v is analytic, so v is the harmonic conjugate of u.

Clearly, v can also be written as
o) = [ isen(le > et dg,
R

which is equivalent to

(3.1) v(z, t) = Q¢ * f(z),
where
(3.2) Qu(€) = —isgn(¢)e ™,
If we invert the Fourier transform we get

1 =z
(3.3) Qi(z) = by g
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the conjugate Poisson kernel. One can immediately verify that Q(z,t) =
Q:(z) is a harmonic function in the upper half-plane and the conjugate of
the Poisson kernel P;(z). More precisely,

i
which is analytic in Im z > 0.

In Chapter 2 we studied the limit as ¢ — 0 of u(z,t) using the fact
that {P,;} is an approximation of the identity. We would like to do the
same for v(z,t), but we immediately run into an obstacle: {Q.} is not an
approximation of the identity and, in fact, Q; is not integrable for any ¢ > 0.
Formally,

. 1

lim Qu(z) = o
this is not even locally integrable, so we cannot define its convolution with
smooth functions.

2. The principal value of 1/x

We define a tempered distribution called the principal value of 1/z, abbre-
viated p.v.1/z, by

1 . (z)
p.v. —(¢) = lim —=dz, ¢€S.
.'II( ) e—0 z|>e T

To see that this expression defines a tempered distribution, we rewrite it as
1 -
p.v.~(¢)=/ Mdﬁ/ =) 4.
T Jz<1 z zl>1 T

this holds since the integral of 1/z on € < |z| < 1 is zero. It is now immediate
that

v 10)| < U141 + ).

1 1
P ition 3.1. ', i ==p.v.—.
roposition 3.1. In &', lim Q: PV o

Proof. For each € > 0, the functions ¢(z) = ™ x{|;|>¢} are bounded and
define tempered distributions. It follows at once from the definition that in
SI
. 1
lim ¥ = p.v. —.
e—0 T

Therefore, it will suffice to prove that in &’

lim (Qt - %w) —o.
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Fix ¢ € S; then
(WQt—"/)t)(d’):/Mdfl‘— g(a:—)da:

2
R t2 4+ lz>t T

= /|$|<t 2 1 22 dr + oo \ T2 T 2 o(z) dz

_ x¢(t-’t‘) ¢(tz)
/|;3|<1 1+ 2 dz - ‘/l-l'l>1 1‘(1 + 1172) dz.

If we take the limit as ¢ — 0 and apply the dominated convergence theorem,
we get two integrals of odd functions on symmetric domains. Hence, the
limit equals 0. O

As a consequence of this proposition we get that

lim Qs f(z) = ~tim [ LBV,

T e—0 lyl>e Yy

b

and by the continuity of the Fourier transform on &’ and by (3.2) we get

( Lpv. —) (6) = ~isgn(é).

Given a function f € S, we define its Hilbert transform by any one of
the following equivalent expressions:

Hf =1lmQuxf,

Hf=>pv.2x],
™ T

(Hf) (€) = —isgn(€)£(¢).

The third expression also lets us define the Hilbert transform of functions
in L2(R); it satisfies

(3.4) |Hfllz = ||f||2,
(3.5) H(Hf)=

(3.6) [Hig=- /f H.

3. The theorems of M. Riesz and Kolmogorov

The next theorem shows that the Hilbert transform, now defined for func-
tions in S or L?, can be extended to functions in L?, 1 < p < ooc.

Theorem 3.2. For f € S(R), the following assertions are true:
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(1) (Kolmogorov) H is weak (1,1):
e € R: 1Hf@)] > M) < S

(2) (M. Riesz) H is strong (p,p), 1 < p < oc:
IH fllp < Coll flp-

Proof. (1) Fix A > 0 and f non-negative. Form the Calderén-Zygmund
decomposition of f at height A (see Theorem 2.11); this yields a sequence
of disjoint intervals {I;} such that

flz) < Aforae z¢ Q= UIj,
j
1
A< ! f<2a
1511,

Given this decomposition of R, we now decompose f as the sum of two
functions, ¢ and b, defined by

_[i@  itzge
9(x) = pil, f dzel,
and

= bi(),
]

bi(z) = (f(x) - I_IIJ_I/J f) X1, (x)

Then g(z) < 2) almost everywhere, and b; is supported on I; and has zero
integral. Since Hf = Hg + Hb,

{z € R: [Hf(z)| > A}
< |{z € R: |Hg(z)| > M2} + {z € R: |Hb(z)| > A/2}|.

where

We estimate the first term using (3.4):

2
e er: g >y < () [ i@ as

/ (z)? dzx

(z)dz

it
S

[+

A
>]00 >
z\
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8
= X/Rf(m)d:z:

Let 2I; be the interval with the same center as I; and twice the length.
and let Q* ={J; 2I;. Then || < 2|Q| and

{z € R [Hb(z)| > A/2}| < Q7] + [{z € Q" - [Hb(z)| > A/2}]

2 2
SUSSY MO

Now |Hb(z)| < 3, |Hbj(z)| almost everywhere: this is immediate if the
sum is finite. and otherwise it follows from the fact that »_b; and > Hb;
converge to b and Hbin L? Hence, to complete the proof of the weak (1, 1)
inequality it will suffice to show that

> [ ) < Cllh
7 IR,
Even though b; ¢ S, when z ¢ 21; the formula
b; ()
Hb;(z) = / 2 g
i () L, Ty Y

is still valid. Denote the center of I; by cj; then since b; has zero integral,

/R o, i@ 2 = /R\z,J /,J. %E_yz)} w
- /11\21J /l, i) (-’Eiy - z-lcj> “

< /1 1b; ()| (/R\ﬂj Ix__lm%adx) “

< /1 Ib; ()] (/R\yj |x—'_l"c'?dx) dy

The last inequality follows from the fact that |y — ¢;| < |I;]/2 and |z —y| >
|z — ¢j|/2 The inner integral equals 2, so

;/R\ﬂ] |Hbj(z)] dz < 2\;/1 Ib;(y)| dy < 4] fls.

dz

Our proof of the weak (1,1) inequality is for non-negative f, but this is
sufficient since an a1bitrary real function can be decomposed into its positive
and negative parts, and a complex function into its real and imaginary parts
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(2) Since H is weak (1,1) and strong (2,2), by the Marcinkiewicz inter-
polation theorem we have the strong (p, p) inequality for l <p < 2. If p > 2
we apply (3.6) and the result for p < 2:

VH fllp = sup{| / Hf-gl ol <1}

=sup{/kf-Hg :Ilgllp151}

< | flpsup{llHglly : llgll < 1}
< Cyllfllp

O

The functions g and b in the proof of the first part of this theorem are
traditionally referred to as the good and bad parts of f.

It follows from these proofs that the constants in the strong (p,p) and
(p',p’) inequalities coincide and tend to infinity as p tends to 1 or infinity.
More precisely,

Cp,=0(p) as p—oo, and Cp,=0((p—-1)"1) as p—1.

By using the inequalities in Theorem 3.2 we can extend the Hilbert
transform to functions in L?, 1 < p < oc. If f € L! and {f,} is a sequence
of functions in S that converges to f in L' (i.e. lim||fn — fll1 = 0), then
by the weak (1,1) inequality the sequence {H f,} is a Cauchy sequence in
measure: for any € > 0,

lim |[{zeR:|(Hfn— Hfxn)(z)| >€}|=0.
m,n—oo
Therefore, it converges in measure to a measurable function which we define
to be the Hilbert transform of f.

If fe P, 1 <p< oo, and {fn} is a sequence of functions in S that
converges to f in LP, by the strong (p,p) inequality, {H f,} is a Cauchy
sequence in LP, so it converges to a function in LP which we call the Hilbert
transform of f.

In either case, a subsequence of {H f, }, depending on f, converges point-
wise almost everywhere to H f as defined.

The strong (p,p) inequality is false if p = 1 or p = oo; this can easily be
seen if we let f = x|o1. Then

1
Hf(z) = ~log|

=

and H f is neither integrable nor bounded.
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In the Schwartz class it is straightforward to characterize the functions
whose Hilbert transforms are integrable: for ¢ € S, H¢ € L! if and only if
J ¢ = 0. We leave the proof of this as an exercise for the reader. For more
information on the behavior of the Hilbert transform on L!, see Section 6.5.

In Chapter 6 we will examine the space of integrable functions whose
Hilbert transforms are again integrable, and the space (larger than L) in
which we can define H f when f is bounded. (Also see Section 6.6.)

4. Truncated integrals and pointwise
convergence

For € > 0, the functions y~'x{jy/>e} belong to LI(R), 1 < g < 00, so the
functions

1 -
1 flz-v) dy
lyl>e Y
are well defined if f € L, p > 1. Moreover, H, satisfies weak (1,1) and

strong (p,p) estimates like those in Theorem 3.2 with constants that are
uniformly bounded for all €. To see this, we first note that

1 ) .
(;X{|y|>c}) (§) = lim

N—oo e<|y|l<N Yy
in(2m
iSI ( yf) ]

Hef(x) =

e—21riy£

dy

= lim
N—oo Jeclyl<N Yy
27Nl sin(t
= —2isgn(£) lxm sin(t) dt
amelgl

This is uniformly bounded, so the strong (2, 2) inequality holds with constant
independent of e. We can now prove the weak (1,1) inequality exactly as in
Theorem 3.2, and the strong (p,p) inequalities follow by interpolation and
duality.

If we fix f € LP, 1 < p < oo, then the sequence {H,f} converges to H f
as defined above in L” norm if p > 1 and in measure if p = 1. To see this,
fix a sequence {fn} converging to f in LP. Then

Hf = llm Hf, = lim hmH(fn_hm llm an—llme

n—oo e—0 e—0n—

the second and third equalities hold because of the corresponding (uniform)
(p, p) inequality.

We now want to show that the same equality holds pointwise almost
everywhere.
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Theorem 3.3. Given f € LP, 1 < p < 00, then
(3.7 Hf(x) = liﬂ(l) H.f(z) a.e.z€eR.
€—

Since we know that (3.7) holds for some subsequence {H, f}, we only
need to show that lim H, f(z) exists for almost every z. By Theorem 2.2 (and
the remarks following it) it will suffice to show that the maximal operator

H* f(z) = sup |Hef(z)|
>0
is weak (p,p). This however, follows from the next result.

Theorem 3.4. H* is strong (p,p), 1 < p < oo, and weak (1,1).

To prove this we need a lemma which is referred to as Cotlar’s inequality.

Lemma 3.5. If f € S then H*f(z) < M(Hf)(z) + CM f(z).

Proof. It will suffice to prove this inequality for each H, with a constant
independent of e.

Fix a function ¢ € S(R) which is non-negative, even, decreasing on
(0,00), supported on {z € R : |z| < 1/2} and has integral 1. Let ¢¢(z) =
€ 1¢(z/€). Then

1 1 1 1
;X{|y|>(} = <¢c *p.v. _) (y) + [;X{|y|>(} - <¢e *p.v. _> (y)]

and the convolution of the first term on the right-hand side with f is domi-
nated by M (H f)(z) (cf. Proposition 2.7). It will suffice to find the pointwise
estimate for the second term when € = 1 since it follows for any other € by
dilation.

If |yl > 1 then

1 o(z) (1 1 )
- — ——dz| = - - d
Y /|z]<1/2 y—z ’ ./|x|<1/2 o) y y—-zr *

< / $z)lzl
1z1<1/2 [Ylly — |

<
)
if |y| < 1 then
=Py g B P p
6-0 |lz|>é z |z|<2 z
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Hence,
1 1 C
5X{|y|>e} - <¢€ *DP.V. _) (y) =1 + y2 ]

and by Proposition 2.7 the convolution of the right-hand term with f is
dominated by M f(z). a

Proof of Theorem 3.4. Since both the maximal function and the Hilbert
transform are strong (p,p), 1 < p < oo, it follows at once from Lemma 3.5
that H* is strong (p, p).

To show that H* is weak (1,1), we argue initially as in the proof of
Theorem 3.2. We may assume that f > 0. Now fix A > 0 and form the
Calderén-Zygmund decomposition of f at height A. Then we can write f as

f=g+b=g+2b]-.
j

The part of the argument involving g proceeds as in Theorem 3.2 using the
fact that H* is strong (2,2). Therefore, the problem reduces to showing
that

o g " (@) > A}l < S bl
Fix z ¢ Q*, € > 0 and b; with support I;. Then one of the following
holds:
(1) (z—ez+e)NI; =15,
(2) (z—ex+e)NI; =0,
B)xz—e€ljorz+ee ;.

In the first case, Hcb;j(z) = 0. In the second, Hebj(z) = Hbj(z); hence,
if we let c; denote the center of I;, since b; has zero average,

1 1 I],
< - ; < b;
|Hebj ()] < /11 rT—y zT-—cj Ib,(y)ldy_l |2" il

In the third case, since z ¢ Q*, I; C (z — 3¢,z + 3¢), and for all y € I,
|z — y| > ¢/3. Therefore,

b 3 T+3¢
Hby(2)| < l‘ fyy'| ay<? / o).

If we sum over all j's we get

3 T+3€
|Hb(z) I<Z| ,2||b1|!1+/ Ib(y)| dy

z~3¢
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It follows from this that

{z &€ H'b(z) > A} 4l

{zeor. 2 Al > o]
p )

+H{z e R.Mb(z) > \/2C}|
2 1; c’
b 3 L, G et bl

\21, o —

IA

|
lz -

IA

Cl/
< = |Ibl;.
<5 1611

5. Multipliers

Given a function m € L (R"™), we define a bounded operator T, on L*(R™)
by

(38) (T f) (§) = m(€) f(€).

By the Plancherel theorem, T, f is well defined if f € L? and

1Tm fll2 < Imllollfl2-

It is easy to see that the operator norm of Tr, is ||m||e’ fix € > 0 and let A
be a measurable subset of {z € R™ : |m(z)| > ||m|lcc — €} whose measure is
finite and positive, and let f be the L? function such that f = y4. Then

1T fll2 > (mlloo — )l fll2-

We say that m is the multiplier of the operator T5,. though occasionally
we will refer to the operator itself as a multiplier When 7, can be extended
to a bounded operator on LP we say that m is a multiplier on LP

For example, the multiplier of the Hilbert transform, m(£) = —isgn(£),
is a multiplier on L? More generally, given a,b € R, a < b, define mq(£) =
X(ab)(§) Let Sy be the operator associated with this multiplier

(Sapf) (€) = X(ap)(£) F(£).

We have the equivalent expression
i
(3.9) Sa,b = 9 (M,HM o — MyHM ),

where M, is the operator given by pointwise multiplication by e
Maf(l') — eZ‘;riaa:f(I)

To see this, note that by (1.16) the multiplier of M, HM_, is sgn(¢ — a).
M, is clearly bounded on L?, 1 < p < oo, with norm 1. Therefore, from
(3.9) and the strong (p, p) inequality for H, we get that S, is bounded on
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L?. By making the obvious changes in the argument we see that this is still
true if a = —oco or b = co. Hence, we have the following result.

Proposition 3.6. There exists a constant Cp, 1 < p < 0o, such that for all
aandb, —o0o <a<b< oo,

[1Sa,6flle < Coll fllp-

For an application of this result, let a = —R, b = R. Then Sg is the
partial sum operator Sg introduced in Chapter 1: Sgpf = Dg* f, where Dg
is the Dirichlet kernel. Hence,

I1Srflly < Coll£ll

with a constant independent of R. This yields the following corollary.
Corollary 3.7. If f € LP(R), 1 < p < o0, then
Jim [[Srf = fll, = 0.

When p = 1 we do not have convergence in norm but only in measure:
lim [{z € R:|Srf(z) - f(x)| >€}| =0.
R—oo

From this result and from Corollary 3.7 we see that there exists a sequence
{Sr, f(z)} that converges to f(z) for almost every z, but the sequence
depends on f.

Given a family of uniformly bounded operators on LP, any convex com-
bination of them is also bounded. Hence, starting from Proposition 3.6 we
can prove another corollary.

Corollary 3.8. If m is a function of bounded variation on R, then m is a
multiplier on LP, 1 < p < 00.

Proof. Since m is of bounded variation, the limit of m(t) as t — —oo
exists, so by adding a constant to m if necessary we may assume that this
limit equals 0. Furthermore, we may assume m is normalized so that it is
right continuous at each z € R. Let dm be the Lebesgue-Stieltjes measure
associated with m; then

13
m(€) = / dm(t) = /R X(oog) () dmit) = /}R X(too) (€) dm().

Therefore,

(Tnf) (€) = /R X(too) ©) 7€) dm(t),
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and so
T (@) = [ Sucof (@) dm(e).
By Minkowski’s inequality

T flp < /R 1Sto0fllp [dml(2) < Col 1 /)R |dm (2);

the integral of |dm| is the total variation of m and by assumption this is
finite. 0O

Given a multiplier. we can construct others from it by translation, dila-
tion and rotation.

Proposition 3.9. Ifm is a multiplier on LP(R"), then the functions defined
by m( + a), a € R", m(Af), A > 0, and m(pf), p € O(n) (orthogonal
transformations), are multipliers of bounded operators on LP with the same
norm as T,.

The proof of this result follows at once from properties (1.16), (1 17)
and (1 18) of the Fourier transform.

If m is a multiplier on LP(R), then the function on R given by m(£) =
m(&1) is a multiplier on LP(R™). In fact, if T, is the one-dimensional oper-
ator associated with m, then for f defined on R",

Tmf(.’l,‘) = Tmf( y L2y ,zn)(a:l).
Then by Fubini’s theorem and the boundedness of T, on LP(R),

| imws@pas= [ ([ Tnft.on. . an)a)Pdn ) o -dan
SC/Rn—l/le(xl" )P dzy - -day.

If we take m = X(g,c0). then by Proposition 3.6 m is a multiplier on
LP(R), 1 < p < oo. Hence. by the preceding argument the characteristic
function of the half-space {¢£ € R™ : & > 0} will be a multiplier on LP(R").
Further, by Proposition 3.9 the same will be true for the characteristic func-
tion of any half-space (since it can be gotten from the one above by a rotation
and translation) The characteristic function of a convex polyhedron with
N faces can be written as the product of N characteristic functions of half-
spaces, so it is also a multiplier of LP(R"), 1 < p < oo. This fact has the
~llowing consequence

Corollary 3.10. If P C R" is a conver polyhedron that contains the origin,
then

lim [|Sxpf — fll, =0, 1<p<oo,
A—oc



6. Notes and further results 61

where S\p is the operator whose multiplier is the characteristic function of
AP ={)\z:z € P}.

In light of the above observation, it is perhaps surprising that when
n > 1, the characteristic function of a ball centered at the origin is not a
bounded multiplier on LP(R"), p # 2. We will examine this and related
results for multipliers on R™ in Chapter 8. (Also see Section 6.8 below.)

6. Notes and further results

6.1. References.

The proof of the theorem of M. Riesz first appeared in Sur les fonctions
conjuguées (Math. Zeit. 27 (1927), 218-244) but had been announced earlier
in Les fonctions conjuguées et les séries de Fourier (C. R. Acad. Sci. Paris
178 (1924), 1464-1467). The proof in the text became possible only after
the Marcinkiewicz interpolation theorem appeared in 1939. See Section 6.3
below for the original proof by Riesz and another one due to M. Cotlar
(A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat.
Cuyana 1 (1955), 105-167). Additional proofs due to A. P. Calderén (On
the theorems of M. Riesz and Zygmund, Proc. Amer. Math. Soc. 1 (1950),
533-535) and P. Stein (On a theorem of M. Riesz, J. London Math. Soc. 8
(1933), 242-247) are reproduced in Zygmund [22]. Kolmogorov’s theorem is
in Sur les fonctions harmoniques conjuguées et les séries de Fourier (Fund.
Math. 7 (1925). 23-28). Another proof due to L. H. Loomis (A note on
Hilbert’s transform, Bull. Amer. Math. Soc. 52 (1946), 1082-1086) can be
found in Zygmund [22] and an elegant proof due to L. Carleson is given
by Katznelson [10]. Our proof uses the Calderén-Zygmund decomposition
in the same way that it appears in Chapter 5 for more general singular
integrals. It is derived from the proof of A. P. Calderén and A. Zygmund
(On the existence of certain singular integrals, Acta Math. 88 (1952), 85-
139). Theorem 3.5 is in the paper by M. Cotlar cited above.

6.2. The conjugate function and Fourier series.

The results in this chapter can also be developed for functions defined
on the unit circle. Historically, they evolved in close connection with the
theory of Fourier series discussed in Chapter 1.

Given a function f € L}(T) (equivalently, a function in L([0,1])), its
harmonic extension to the unit disk is gotten by convolution with the Poisson
kernel

2

1-—
r 0<r«<i,

P:,-t = ) —
0 1 — 2rcos(2nt) + r2
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=l the harmonic conjugate of Py x f(t) is gotten by convolution with the
conjugate Poisson kernel
2r sin(2mt)

t) =
Q-0 1 — 2r cos(2nt) + 12’
The analogue of the Hilbert transform is the conjugation operator which is
defined by

o h oo fa) & f@~t) - fla+1)
(3 10) f(l‘) N rl—lgl‘ Qr f(x) B 31_% e<t<1/2 tan(ﬂ-t) a

Both limits can be shown to exist for almost every .

0<r<l1

The theorems of M. Riesz and Kolmogorov hold for the conjugation
operator. Hence, by an argument similar to the one in Section 5 it can
be shown that the partial sum operators Sy f of the Fourier series of f are
uniformly bounded on L, and so Sy f converges to f in LP (Cf. Chapter 1,
Section 4.)

Given a function f € L}(T), its conjugate Fourier series is the trigono-

metric series
o0

S(fl(z) = ) —isgn(k)f(k)e*™*=;

—o0
when the Fourier series of f is written as in (1 1), then the conjugate series is
gotten by switching the coefficients of the sine and cosine terms and taking
their difference instead of their sum:

[e o)
S'[f](a:) = Z ag sin(2wkz) — by cos(2rkz).
k=0
When f € L' then S[f] coincides with the Fourier series of f.

Even for continuous functions the second limit in (3.10) exists because
of subtle cancellation and not because the numerator gets small for ¢ close
to zero. It can be shown using the Baire category theory that there exists a
continuous function f such that for every z € [0, 1],

/“Hﬂz—n—fw+w|
0 tan(mt)
The same phenomenon occurs with the Hilbert transform

dt = oo

For these and further results, see the books by Bary [1], Katznelson [10],
Koosis {11] and Zygmund [21].

6.3. Other proofs of the M. Riesz theorem.

The original proof of M Riesz of the LP boundedness of the conjugate
function is based on the analyticity of powers of an analytic function. The
easiest case is when p = 2k, k an integer. Given a function f on the unit
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circle, let u = Pr % f and v = @, * f; then F(2) = u + iv is analytic in the
unit disc and hence so is F(z)?*. By Cauchy’s theorem

2k 2m
L / cllC R / F(rety® dt = F(0).
|z|=r 0

2mi z 2r

If F(0) = 0 then by taking the real part of F(re) we get that

27 . k 2k 2n ) . ) _
/ lu(re®)*dt <> (2]_) / u(re™)[? |u(re™)[?*~% dt.
0 i=1 0

By applying Holder’s inequality (with the appropriate exponent) to each
term on the right-hand side, we get

21 2
/ lu(re®)|?* dt < Cj, / [u(re)|?* dt,
0 0

where C}. is independent of the radius of the circle. Taking the limit as the
radius tends to 1, u tends to f and v to f. (When F(0) = f(0) # O replace
fby f-£(0).)

From the inequality for p = 2k, the whole theorem can be obtained using
interpolation and duality, but since interpolation was not available in 1923,
Riesz next considered the case when p > 1 is not an integer. In order to get
that (u+1v)P is analytic, he assumed u > 0 (which is true if f is non-negative
and not identically zero) and then used a clever estimate. For technical
reasons, this argument does not work for p an odd integer, and the inequality
for these values of p is gotten by duality. In a letter dated November 1923,
Riesz explained to Hardy how he arrived at the proof and showed him the
essential details (reproduced in M. L. Cartwright, Manuscripts of Hardy,
Littlewood, M. Riesz and Titchmarsh, Bull. London Math. Soc. 14 (1982),
472-532).

From the fact that (u + iv)? = u? — v? + 2iuv is analytic we deduce
H(f?— (Hf)?) = 2f- Hf, which gives the following formula due to Cotlar:

(3.11) (Hf)?=f*+2H(f -Hf).

An alternative way to prove this (proposed by Cotlar in his paper) is to
show directly that

HfxHf = f+ f - 2isen(€)(f + HJ).
It follows from (3.11) that if [|[Hfll, < Cplliflly, then ||Hfllep < (Cp +
C2 + 1)||fll2p- In fact,

IH 113, = I(H)?1lp
<N2lp+ 20H (- H)lp
< |1 £1IZ, + 2Cllf - H Sl
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< 135 + 2G5l fllopll H fl12p

and the desired inequality follows by solving a quadratic equation.

If we begin with (3.4) and repeatedly apply this inequality we get, for
instance, that ||H fllox < (2% — 1)||f||o« for integers £ > 1. By the Riesz-
Thorin interpolation theorem (Theorem 1.19), we get

IHfllp < Collfllp: 22> 2.

We get the Riesz theorem for p < 2 by using duality as in the proof of
Theorem 3.2.

An elementary real-variable proof when p = 2 (without using the Fourier
transform) is the following:

IH S = (f,—HeHcf) < |If 2l HHef |12,

and the kernel of H.H,, which is the convolution of y_lX{Iyl>e} with itself,
can be computed explicitly and shown to be in L!. (By a dilation argument,
it suffices to consider the case ¢ = 1.) This proof is attributed to N. Lusin
(1951) by E. M. Dyn'kin (Methods of the theory of singular integrals: Hilbert
transform and Calderén-Zygmund theory, Commutative Harmonic Analysis,
I, V. Havin and N. Nikolskii, eds., pp. 167-259, Springer-Verlag, Berlin,
1991). A similar argument had been used earlier by Schur for a discrete
version of the operator.

Another real-variable proof when p = 2 using Cotlar’s lemma is in Chap-
ter 9, Section 1.

6.4. The size of constants.

The best constants in the theorems of Kolmogorov and M. Riesz are
known. For the strong (p,p) inequality, 1 < p < oo, the best constants are
Cp = tan(m/2p), 1 < p < 2, and Cp, = cot(n/2p), 2 < p < oo. This was
first proved by S. K. Pichorides (On the best values of the constants in the
theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972),
165-179); a much simpler proof was later given by L. Grafakos (Best bounds
for the Hilbert transform on LP(R'), Math. Res. Let. 4 (1997), 469-471).

In the proof of the M. Riesz theorem due to Cotlar given above, we get
the estimate C, < Cp + ,/Cg + 1. If we begin with Cy = 1, the resulting

bounds for Cy« are sharp. This fact was first observed by 1. Gohberg and
N. Krupnik (Norm of the Hilbert transformation in the space LP, Funct.
Anal. Appl. 2 (1968), 180-181).
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The best constant in the weak (1,1) inequality has a more complex
expression:

I+5+&+:
Cr=
1- %+

‘ﬂb—a C‘.E.Jb-l
u,y._ o

This was first proved by B. Davis (On the weak type (1, 1) inequality for con-
jugate functions, Proc. Amer. Math. Soc. 44 (1974), 307-311) using Brow-
nian motion. A non-probabilistic proof was later given by A. Baernstein
(Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27
(1978), 833-852).

6.5. The Hilbert transform on L.

As we noted in Section 3, if f € L! then H f need not be. However, unlike
the case of the maximal function, there exist f € L! such that Hf € L. For
example, if f = x(0,1) — X(-1,0) then Hf(z) = log(|z? — 1]/x?) is integrable.

A simple necessary condition for H f to be integrable if f € L} is that
f(0) = [ f = 0. If fis such that the identity (Hf) (€) = —isgn(€)f(€)
holds, then it suffices to note that the Fourier transform of an integrable
function is continuous, and f(£ ) and —isgn(€) f(£) are both continuous only
if f(0) = 0. This argument clearly works if f € L' N L? since in this case
the Fourier transform identity is valid. But one can show that this identity
holds if f, Hf € L. This would follow if ¢ x (Hf) = H(¢ * f) for every
¢ € S: take the Fourier transform of both sides and simplify. This equality
can be proved as is done for more general singular integrals in the paper by
A. P. Calderén and O. Capri (On the convergence in L' of singular integrals,
Studia Math. 78 (1984), 321-327).

Similarly, when f,Hf € L' we have the identity H(Hf) = —f. We
originally gave this in (3.5) for L? functions, and it can be extended to
LP 1 < p < 00, using the results in this chapter. For f and H f integrable, a
proof using complex analysis is due to E. Hille and J. D. Tamarkin (On the
absolute integrability of the Fourier transform, Fund. Math. 25 (1935), 329-
352). The interesting paper by J. F. Toland (A few remarks about the Hilbert
transform, J. Funct. Anal. 145 (1997), 151-174) examines this question and
provides additional historical information.

In general, Hf ¢ L!, so we cannot even define the Hilbert transform of
Hf. Nevertheless, if we replace the Lebesgue integral with a more general
one, then it is possible to define H(H f) and to get the identity. (See Zyg-
mund [21, Chapter 7].) The above-cited paper by Toland uses this extended
notion of the integral.
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£.6. Llog L estimates.

The following result characterizes the local integrability of the Hilbert
transform; it is analogous to Theorem 2.18 for the maximal function.

Theorem 3.11. Let B and C be two open balls such that B C C.

(1) If flog* |f| € L}(C). then Hf € L'(B).
(2) Conversely, if f >0 and Hf € L(C), then flog* |f| € L}(B).

The first part of the theorem is due to A. P. Calderén and A. Zygmund
(see the paper cited above). It can be sharpened using Orlicz spaces (cf.
Chapter 2, Section 8.4, and Zygmund [21, Chapter 4]). The second part is
due to E. M. Stein (Note on the class Llog L, Studia Math. 32 (1969), 305
310). The hypothesis f > 0 can be replaced by a weaker condition which
measures (in some sense) the degree to which P, » f differs from a positive
harmonic function. See the article by J. Brossard and L. Chevalier (Classe
LlogL et densité de l'intégrale d’aire dans R7?, Ann. of Math. 128 (1988),
603-618).

6.7. Translation invariant operators and multipliers.

Let 7, be the translation operator: 7,f(z) = f(z — h). An operator T
is said to be translation invariant if it commutes with 7,: 7,0 T =T o 7y,
h € R™. The Hilbert transform, for example, is translation invariant. Such
operators are completely characterized by the following result.

Theorem 3.12. Given a linear operator T which is translation invariant
and bounded from LP(R™) to LI(R™) for any pair (p,q), 1 < p,q < oo, then
there exists a unique tempered distribution K such that Tf = K* f, f € S.

If such a T is bounded from L? to L9 and not zero, then p cannot be
greater than ¢. An elegant and very simple proof of this fact is due to
L. Hérmander (Estimates for translation invariant operators in LP-spaces,
Acta Math. 104 (1960), 93-139). First note that limy—o ||f + 7 fll, =
2Y/P||f||p. Let ||Tl,; be the norm of T as a bounded operator from L? to
LY. Since T commutes with translations,

ITf+7aTfllg < [ Tllpg If + afllps
if we let h tend to infinity we get
ITfllg < 22719 T gl 1,

and this is possible only when p < q.

Clearly, if Tf = K * f then T is linear and translation invariant. By the
properties of the Fourier transform, (Tf) = K f, which implies that K is a
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multiplier of T, at least if K € L™, following the definition in Section 5. But
if T is bounded on LP, then by duality (since its adjoint is the convolution
with kernel K(z) = K(—z)) it is bounded on L?. Thus by interpolation
it is bounded on L2, so the condition that K € L™ is necessary, and our
assumption that a multiplier m is in L is justified.

It would be interesting to characterize the distributions K that define
bounded operators (equivalently, to characterize the multipliers on LP), but
a complete answer is known only in two cases.

Proposition 3.13.

(1) T is bounded on L2(R") if and only if K € L and the norm of T
as an operator on L? is the norm of K in L.

(2) T is bounded on L'(R™) if and only if K is a finite Borel measure,
and the operator norm of T equals the total variation of the measure.

Note that since p. v.1/z is not a measure, Proposition 3.13 gives another
proof that the Hilbert transform is not bounded on L.

For all of these results, see Stein and Weiss [18, Chapter 1].

6.8. Multipliers of Fourier series.

The multipliers of trigonometric series are precisely bounded sequences,
{\(k)}rez- The associated operator is defined for f € L?(T) by

Txf(z) = ) A(k)f(k)e?™™*=.
kez
(For multiple Fourier series the definition is the same except that we take
k € Z™.) T can be written as the convolution of f with a distribution whose
Fourier coefficients are {A{k)}, and there are results analogous to those in
Proposition 3.13.

If we know the boundedness properties of a multiplier on LP(R), then

we can deduce results for multipliers of series by restricting the multiplier
to the integers.

Theorem 3.14. Given 1 < p < o0, suppose the operator T defined by
Tf = K * f is bounded on LP(R). If K is continuous at each point of
Z and A\(k) = K(k), then the operator T associated with this sequence is
bounded on LP(T) and ||Ta| < ||T)}-

There is also an analogous n-dimensional result. For a proof see Stein
and Weiss [18, Chapter 6].

Starting from Theorem 3.14, one can deduce results for the partial sum
operators Sy of a Fourier series from the corresponding results for Sg in
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Section 5, and in particular one gets the convergence in LP norm of the
partial sums of a Fourier series. (Cf. Chapter 1, Section 4.)

6.9. The Hilbert transform of characteristic functions.
If A is a subset of R with finite measure, one can show that

2|A|
R: = ——
e € R HG@] > M= e
This result was first proved by E. M. Stein and G. Weiss (An extension of
a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8

(1959), 263-284). A simple proof is given by Zygmund [22, p. 15].



Chapter 4

Singular Integrals (I)

1. Definition and examples

The singular integrals we are interested in are operators of the form

(4.1) Tf(z) = lim /| U)oy a,

€0 Jly|>e |y|n

where Q is defined on the unit sphere in R™, S*~1, is integrable with zero
average and where y' = y/|y|.

With these hypotheses, (4.1) is defined for Schwartz functions since it is
the convolution of f with the tempered distribution p.v. Q(z')/|z|*, defined
by

(4.2) p.v. ()(¢)_1 /| Q(””')qs(z)dz

|2 i =0 J|z)> |z|™
_ Q) oy Q(z')
‘/m« a2 "’(0”‘1“[1.» a9

(The second equality follows since 2 has zero average.) Since ¢ € S, both
integrals converge. Note that we could also assume, for instance, that ¢ in
(4.2) or f in (4.1) is a Lipschitz function of order a with compact support.

Proposition 4.1. A necessary condition for the limit in (4.1) or (4.2) to
exist is that Q have zero average on S~ 1.

Proof. Let f € S(R") be such that f(z) = 1 for any |z| < 2. Then for
|z <1,

_ Uy) oo . Q@)
Tf(z)../y|> Tuir fle = v)dy+ iy e<lyl<1 1y 4
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The first integral always converges but the second equals

lim Q(y') do(y') - log(1/e),
e—0 Sn—1

and this is finite only if the integral of Q on ™! is zero. a

When n = 1 the unit sphere reduces to two points, 1 and —1, and Q
must take opposite values on them. Thus on the real line, any operator of
the type in (4.1) is a multiple of the Hilbert transform.

In higher dimensions we consider two examples given by A. P. Calderén
and A. Zygmund. First, let f(z1,z2) be the density of a mass distribution
in the plane. Then its Newtonian potential in the half-space Ri is

f (yl) yZ)
o) = [ G TR
The strength of the gravitational field is gotten by taking partial derivatives
of the potential. The component in the z3 direction is equivalent to a mul-
tiple of the Poisson integral which we have already considered. The other
two are similar to one another; for example, for the first we formally have
that

. Ou fy1,92)(21 — 1)
lim —(z1,22,23) = — dy1dys.
z3—0 31‘1( 12, 73) /R? [(z1—41)? + (z2 — 32)?%/2 e
This integral does not converge in general, but it exists as a principal value
if f is smooth and is in fact the value of the limit of du/8z;. It corresponds
to a singular integral of the form (4.1) in R? with Q(z') = —z1/|z|. (In
polar coordinates this becomes cos(6).)

The second example is gotten from the logarithmic potential associated
with a mass distribution f(z1,z2) in the plane (i.e. the solution of the equa-
tion Au = f):

1

u(zy,z2) = /R2 f(y1,92) log <[($1 o (@ y2)2]1/2) dyidyz.

This integral converges absolutely if, for example, f has compact support,
and partial derivatives can be taken under the integral sign. However, this
is not possible for second derivatives: one can show that 82u/0z,0z; is
given by an operator of the form (4.1) with Q(z') = 2z122/|z|?. For more
information on this operator, see Section 5.

2. The Fourier transform of the kernel

A function f is homogeneous of degree a if for any £ € R™ and any A > 0,

f(z) = X*f(z).
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Given any function ¢, define ¢5(x) = A""¢(A~1x); then

L @@= [ j@da,
so we can define the homogeneity of a distribution as follows.

Definition 4.2. A distribution T is homogeneous of degrec a if for every
tesf function ¢ it satisfies

T($r) = A*T(¢).

A simple computation shows that the distribution given by (4.2) is ho-
mogeneous of degree —n; details are left to the reader.

Proposition 4.3. If T is a tempered distribution which is homogeneous of
degree a, then its Fourier transform is homogeneous of degree —n — a.

Proof. By Definition 1.16 and property (1.18), if ¢ € S then
T(¢2) = T($(A) = AT"T(§x-1) = A" °T() = A""°T(¢).
ad

As a corollary to this proposition we can easily calculate the Fourier
transform of f(z) = [z|7® if n/2 < a < n. For in this case f is the sum
of an L' function (its restriction to {|z| < 1}) and an L? function, so by
Proposition 4.3, f is a homogeneous function of degree a —n. Hence, since f
is rotationally invariant, f (€) = capn)€|®™. We calculate ¢, using Lemma
1.14 and (1.21):

/ e—?rlx|2|x|—a dr = ca‘n/ e—7l’|z:|2|x'a——n d:t7
7 Rn

since
/0 — b dp = %ﬂ_%”bl‘ (—1 ;_ b) )
we see that
- Pl (n_—a)
4.3 —a — 2 a—-n
(4.3) (I=]7%) (&) NO) €]

In fact, this formula holds for all ¢, 0 < a < n. For 0 < a < n/2
it follows from the inversion formula (1.22). Further, since |z|™® tends to
|z|"/2 as @ — n/2, and since the Fourier transform is continuous, (4.3) holds
with a = n/2.
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Theorem 4.4. If Q is an integrable function on S™1 with zero average,
then the Fourier transform of p.v.Q(z')/|z|" is a homogeneous function of
degree 0 given by

g me= [ 0w o (e - T esmte-6)] doto)

Proof. By Proposition 4.3 the Fourier transform is homogeneous of degree
0; therefore, we may now assume that |£| = 1. Since {2 has zero average,

(6) = lim Q(yn) —2miy-§ dy
0 Jeclyi<1/e 1Yl

1/e )
= lim Q(u) [/ (e~ Zmirud _ 1)— / e_zmm'gﬂ:, do(u).
€—0 Jgn-1 T

Thus m(§) = I} — il3, where

€e—0

I; = lim - Qu) [/Sl(cos(%ru £) - 1)%

+/11/€cos(27rru & — Jda(u)

/e
I= !1_1}(1) - Q(u) [/61 sin(2mru - f)d :, do(u).

By the dominated convergence theorem we can exchange the limit and
outer integral. In each inner integral make the change of variables s =
27r|u - £|. We may assume that u - £ # 0, so in I, we get

27|u-€]/e d
/ sin(s) sgn(u - f)—s.
27|u-€le s

As € — 0 this becomes

sgn(u - &) /000 sin(s) ds = gsgn(u -£).

S

After the change of variables in I; we get

1 2m|u-€|/€ d 27 [u-€} d
/ (cos(s) — 1)E +/ cos(s)—s —/ —s;
2| u-Ele s 1 S 1 $§

as € — 0 this becomes

1 oc
/ (cos(s)——l)g+/ Mds—logl?wl —log|u-¢|.
0 s 1 s
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If we integrate against Q, which has zero average on S®~!, the constant
terms disappear and we get the desired formula for m. O

In formula (4.4) the factor multiplied against 2 has two terms: the first
is even and its contribution is zero if  is odd; it is not bounded but any
power of it is integrable. The second is odd and its contribution is zero if
Q is even; further, it is bounded. Since any function Q on S™"! can be
decomposed into its even and odd parts,

1 1
Qe(u) = 5 (2u) + (=), Do(u) = 5(Q(u) = A-w)),
we immediately get the following corollary.

Corollary 4.5. Given a function Q with zero average on S™!, suppose
that Q, € L}(S™!) and Qe € LI(S™!) for some ¢ > 1. Then the Fourier
transform of p.v.Q(z')/|z|™ is bounded.

From (4.4) one can easily find an integrable function 2 such that m is
not bounded. Nevertheless, in Corollary 4.5 we can substitute the weaker
hypothesis Q. € Llog L(S™?), that is,

/S"—l 19 ()| log™ |Qe(u)| do(u) < oo.

(Recall that log™ t = max(0,logt).) The sufficiency of this condition follows
from the inequality

AB< AlogA+e?, A>1,B>0.
For in the region D = {u € S*71: |Q(u)| > 1},

/D Q(u) log (ﬁ) do(u)

< /D 212(u) log(2/Qw)) do(u) + /D - €]7V2 do(u).

Q is bounded in the complement of D, and so the integral is finite.

3. The method of rotations

Corollary 4.5 together with the Plancherel theorem gives sufficient conditions
for operators T as in (4.1) to be bounded on L2. In this and the following
section we develop techniques due to Calderén and Zygmund which will let
us prove they are bounded on L?, 1 < p < 00.

Let T be a one-dimensional operator which is bounded on L?(R) and let
u € S™71. Starting from T we can define a bounded operator T, on R" as
follows: let L, = {\u: X € R} and let L be its orthogonal complement in
R™. Then given any ¢ € R", there exists a unique r1 € R and Z € L,{ such
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that z = xyu + Z. Now define T, f(z) to be the value at z; of the image
under T of the one-dimensional function f(-u + Z). If C, is the norm of T
in LP(R), then by Fubini’s theorem,

/R TS (e)P da = /L & /R IT(f (- + 2) (@) P deyda
<cp [ [istusaEpnds
= C{,’/}Rn |f(z)|P dz.

Operators gotten in this way include the directional Hardy-Littlewood
maximal function,

My, f(z) = i‘i%’ﬁ/ — tu)|dt,

and the directional Hilbert transform,

Hof(z)=21im [ fz—tw)®
me—0 t]>e t
Since the operators T, obtained from the operator T are uniformly
bounded on LP(R™), any convex combination of them is also a bounded
operator. Hence, the next result is an immediate consequence of Minkow-
ski’s integral inequality.

Proposition 4.6. Given a one-dimensional operator T which is bounded
on LP(R) with norm Cp, let T, be the directional operators defined from T .
Then for any Q € L}(S™1), the operator Tq defined by

Tof(@) = [ QWTf()do(w
is bounded on LP(R™) with norm at most Cp||Q||1.

By using this result we can pass from a one-dimensional result to one
in higher dimensions. Its most common application is in the method of
rotations, which uses integration in polar coordinates to get directional op-
erators in its radial part. For example, given Q € L!(S™71), define the
“rough” maximal function

1
(4.5) Mg f(x) = sup —/ QY f(z - )l dy.
r>0 [B(0, R)| JB(o,Rr) I |

If we rewrite this integral in polar coordinates we get

Maqf(z) = sup

1 R
R>0—!B(0 N /Sn_l 12 u)l/o |f(z = ru)|r" ! drdo(u)
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1
Lo Q(u)| My f (z) do (u).
S [ 19WIM @) dote)
Corollary 4.7. If Q € L}(S"7!) then Mg is bounded on LP(R"), 1 < p <
0.

If we let Q(u) = 1 for all u, then Mg becomes the Hardy-Littlewood max-
imal function in R™; thus the method of rotations shows it is bounded on
LP(R™), p > 1, starting from the one-dimensional case. Further, it is inter-
esting to note that the LP constant we get is O(n) since |S™"~1|/|B(0,1)| = n.
(See Chapter 2, Section 8.5.) On the other hand, the method of rotations
does not give us the weak (1,1) result. (See Section 7.6.)

We can also apply Proposition 4.6 to operators of the form (4.1) when
Q is odd. In fact, if we fix a Schwartz function f, then

Tf@) =tim [ Q@) / ” fz - ru) ?da(u)

e—0 Sn—1
= lim 1 Q(u) flz—ru) ﬂda(u);
e—0 2 gn-1 Ir|>e r

since 2 has zero average, we can argue as we did in (4.2) to get

1. dr
= glim [0 [ (e - fe) st

1 d

43 Q(u) f(z - ru) Zdo(u).

2 Sn-1 [r|>1 T

Because f € S, the inner integral is uniformly bounded, so we can apply the
dominated convergence theorem to get

=5 [ 2@ dotw)

Since the Hilbert transform is strong (p,p), 1 < p < oo, we have proved
the following.

Corollary 4.8. If Q is an odd integrable function on S™ !, then the oper-
ator T defined by (4.1) is bounded on LP(R™), 1 < p < oo.

In Corollary 4.8 we implicitly defined Tf for f € LP as a limit in LP
norm. However, as with the Hilbert transform, we can show that (4.1) holds
for almost every x. By an argument similar to the one above we can show
that the maximal operator associated with the singular integral,

/| 2 0 yyay

. T =
(4.6) f(z) =sup e W

>0

)
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satisfies
Tfa) < 5 [ 10 E) dotu),

where H, is the directional operator defined from the maximal Hilbert trans-
form. (See Chapter 3, Section 4.) Therefore, we can apply Proposition 4.6
and Theorem 2.2 to get the following.

Corollary 4.9. With the same hypotheses as before, the operator T* defined
by (4.6) is strong (p,p), 1 < p < co. In particular, given f € LP, the limit
(4.1) holds for almost every z € R™.

An important family of operators with odd kernels consists of the Riesz
transforms,

(4.7) R;f(z) = cap.v. /Rn |y|3f+lf($ -y)dy, 1<j<n,

where

Cn =F(n+1) .
2
The constant is fixed so that for f € L?,

(4.8) (Rif) (&) = —sz(e

this in turn implies that

(4.9) zn:R;‘? = -
j=1

where I is the identity operator in L?. Since the Schwartz functions are
dense in LP, p > 1, this identity in fact holds in every L? space.

To prove (4.8) one could use Theorem 4.4 directly; instead we will argue
as follows. With equality in the sense of distributions,

—n+1 Zj
' , m _(l—n)pv ' |1;7+1¥

so if we apply (4.3) we get

(v |"+1) © = (ail r"“)ﬁ(e)

f’”f’ (124 (@)
)

27rz§]7r2 I (
1-n T(31)

2) 1
) 1€l
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4. Singular integrals with even kernel

If the function Q in the singular integral (4.1) is even, then the method of
rotations does not apply since we cannot represent the singular integral in
terms of the Hilbert transform. However, we ought to be able to argue as
follows: by (4.9),

ZRZ(Tf ZR, (R;T)f,
Jj=1
and the operator R,T is odd since it is the composition of an odd and even
operator. If we can show that R;T has a representation of the form (4.1),
then by Corollary 4.8, T is bounded on LP.

In the rest of this section we will make this argument precise by showing
that R;T has the requisite representation.

Let {2 be an even function with zero average in LI(S™"!), for some ¢ > 1,
and for € > 0 let
Q')
(4.10) K (z) = e
Note that K. € L™, 1 < r < q. Thus if f € C°(R") then by taking the
Fourier transform we see that

(4.11) Rj(Ke* f) = (RjKc) * f.

Tom X{l|z|>€}-

Lemma 4.10. With the preceding hypotheses, there exists a function I~(]~
which is odd, homogeneous of degree —n and such that

lim R; K(z) = Kj(z)
€—
in the L° norm on every compact set that does not contain the origin.

Proof. Fix z # 0 and let 0 < ¢ < v < |z|/2. Then for almost every such z,
by Corollary 4.9

Tj —
RjKe(x) _RjKu( ) =c¢n }E% - WX{M y|>6}[K (y) — Ku(y)) dy

—e / %-y AY)
e<|yl<v |z — yIn+1 ly|™

since 2 has zero average,

e / ( Ty % ) Q(y") dy
—c, .
e<lyl<v \|z = y["*1  Jz|nF1 ) y|n
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The:efore. if we apply the mean value theorem to the integrand we get

. cloh
412)  |R;K.(z) — R;K,(z)| < / dy < v
( iK(z) =~ R; Koz 'mw MOM 2o

Hence, for any o > 0. {R, K.} is a Cauchy sequence in the L> norm on
{lz| > a}. So for almost every z we can define K} by

Kj(z) = 51_1}(1] R K. (z).

The function R;K, is odd. so (by modifying K ; on a set of measure zero if
necessary) K7 is also an odd function

To find the desited function I~(j, fix A > 0; then again for almost every

x.
R;K.(\z) = lim ¢ / ATi =Y g )d
e S -0 " Az—y|>6 |/\:L‘-—- y|n+l v
y] n
= lime¢ / TiT Y - A(y) dy
80" Jiamyisaya I — y7 o\

= AT"R;K\(x)

Hence. for almost every z, K7(Az) = A™"K;(z) The set of measure zero
where equality does not hold depends on A, but since K’ ; is measurable, the
set

D = {(z,A) CR" x (0,00) : K7(Az) # A7"K;(z)}

has measure zero Theiefore, by Fubini’s theorem there exists a sphere
centered at the origin of radius p. S,, such that D N S, has measure zero

We now define
n
p AN
- ) K ——) ifx#0and pz/|z| €DNS,;
wew - () 5 (5 # 0 and poflsl £ DN 5

0 otherwise.

This function is measurable, homogeneous of degree —n (by definition) and
odd Further, K;(z) = K j(x) almost everywhere. To see this. let = # 0 be
such that g = px/|z] € DN S,. (The set of x such that zop € D NS, has
measure zero since D N S, has measure zero ) Then for almost every A,

Kj(Azo) = A"Kj(z0) = A"K (z0) = K} (Azo).

Lemma 4.11. The kernel K ; defined in Lemma 4 10 satisfies

L Bswlde) < cylie,
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Furthermore, if Kj(z) = f{'j(z)x“xbe}, then Ac = R; K, — I?j,c € LY(R™)
and || Aclly < Cglilq:

Proof. By the homogeneity of K;,

- 1 ~
K;(u dau:——/ K;(z)|dz
Jo Estdot = s [ iRyt
1 ~
< @ 1<[a|<2 |K;(z) — RjKl/z(z)| dz

o),
+— |R; Ky jo(x)| dz.
log 2 1<|z|<2 3T )

In (4.12) let v = 1/2 and |z| > 1; then if we take the limit as e — 0 we get
Cli2h

(4.13) |K;(z) — RjKya(z)| < Tz

Therefore, the first integral on the right-hand side above is bounded by
ClI9l; < C||9lq- To bound the second integral, note that

/ |R; K1/2(z) dz < C||R; Ky p2llg < ClIK1allg < CliS2q-
1<|z|<2

To prove the second assertion it will suffice to show that [|A1]l; < oo
since A, = e_"Al(e_lx). But then

1Al = /]R Ry K (z) — Kyn(2)|dz

5/ IRjKl(z)|d:c+/ |f<]-(x)|dx+/ |A1 (z)] dz.
|lz|<2 1<|z|<2

|lz|>2
The first integral is bounded by C||R;K1|lq < C||Killq £ C|2)jq; above
we showed that the second integral has the same bound. To see that the
third integral is bounded, we argue as we did for (4.13) to get |Ai(z)| <

ClQfllz| o

Theorem 4.12. Let Q be a function on S™~! with zero average such that
its odd part is in LY(S™!) and its even part is in LI(S™!) for some ¢ > 1.
Then the singular integral T in (4.1) is bounded on LP(R™), 1 < p < o0.

Proof. By Corollary 4.8 we may assume {2 is even. Further, by arguing as
we did for the Hilbert transform, it will suffice to establish the L? inequality
for functions f € C°(R™). For such f, Tf = lim._,g K, * f. From (4.9) and
(4.11) we see that

Ko+ f=-3 Ri(R;K)*f),

j=1
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and in the notation of Lemma 4.11,
(RiK)* f=Kjex f+ Ac*f.

By Lemma 4.10, K ; is an odd, homogeneous kernel of degree —n, so by
Corollary 4.9,

1K % fllp < C/ Kj(w)|do(u)[|fllp < Clllflp-
By Lemma 4.11,
1Ac* fllp < 1Al fllp < ClQUGN o

If we combine these estimates and use the fact that R; is bounded in L? we
see that

IKe* fllp < ClIQl fllp-

Since the right-hand side is independent of ¢, by Fatou’s lemma we get

ITSllp < ClIQlolI fll

and. this completes our proof. a

Another proof of Theorem 4.12 is given below in Chapter 8. (See Corol-
lary 8.21.)

5. An operator algebra

Let P(¢) = 3", ba&® be a polynomial in n variables with constant coefficients
and let P(D) be the associated differential polynomial, that is, the operator

given by
D)f =) b, Df.
a

It follows from (1.19) that
(P(D)f) () = P(2mi§) f(€).

Define the operator A to be the square root of the positive operator —A:

(4.14) (Af) () = 2nlelf (&).
If P is a homogeneous polynomial of degree m, then
(4.15) P(D)f =T(A™f),
where the operator T is defined by

@) =2 fe.

eI
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The multiplier P(£)/|€|™ is homogeneous of degree zero and its restriction
to S"~1 coincides with P(¢'), so it is a C* function. (In fact, it can be
shown that T is a linear combination of compositions of Riesz transforms.)

The operator T is not a singular integral of the type given in (4.1)
since P(€) may not have zero average on S®~!. However, we can get such a
singular integral by subtracting a constant, that is, a multiple of the identity
operator.

This particular operator T is a special case of the operators in the fol-
lowing result.

Theorem 4.13. If m € C(R™ \ {0}) is a homogeneous function of degree
0, and Tr, is the operator defined by (Trnf) = mf, then there exist a € C
and Q € C®(S"1) with zero average such that for any f € S,

/

|z[™

Tmf =af +p.v.

Since any homogeneous function of degree 0 is the sum of a constant and
a homogeneous function of degree 0 with zero average on S"~! Theorem
4.13 is an immediate consequence of the following lemma.

Lemma 4.14. Let m € C*°(R™\ {0}) be a homogeneous function of degree
0 with zero average on S™~. Then there ezists Q € C°°(S™1) with zero
average such that m(€) = p.v.Q(z')/|z|™.

Proof. Since m is a tempered distribution, i exists. Hence,

orm\ "~

(5) ©=cano,

where C is a constant. The function 0"m/0z} is homogeneous of degree
—n, in C*®°(R"\ {0}) and has zero average on S™~!. Furthermore,

o'm o"m “
3—1:? = p.V.a—x? + lalz<kCaD 5,

where § is the Dirac measure at the origin, since the difference between
O"m /O and p.v."m/OEL is a distribution supported at the origin. If we
take the Fourier transform of both sides of this equation we get

. a"m )
cgne) = (p-v.52) ©+ ¥ Cal2mit)®
! lal<k
The left-hand side and the first term on the right-hand side are homo-
geneous distributions of degree 0, so the polynomial on the right-hand side

reduces to a constant. Thus the right-hand side is a homogeneous function
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of degree 0 which is in C°>°(R™ \ {0}). Since this is valid for 1 < i < n, m
coincides on R™ \ {0} with a homogeneous function of degree —n. We will
denote its restriction to S™~! by €.

To see that © has zero average on S™~!, fix a radial function ¢ € S
which is supported on the annulus 1 < |z| < 2 and which is positive on the
interior. Then

i) = [ Tdowrde=c [ ot dotw),

v |z

where ¢ > 0; furthermore, since ¢ is radial and m is homogeneous,

m(¢) =m(@) = ¢ / m(u)do(u) = 0.

Sn-1

Finally, to see that 7h is identical to p.v.Q(z')/|z|?, consider their dif-
ference,

Q(z")
[z[™

which is supported at the origin. If we take the inverse Fourier transform
of this difference we get a polynomial which must be constant since both
m and (p.v.Q(z')/|z|")” are bounded. Further, this constant must be zero
since both m and Q have zero average on S™~1. d

m—p.V.

Theorem 4.15. The set A of operators defined by Theorem 4.13 is a com-
mutative algebra. An element of A is invertible if and only if m is never
zero on S™1.

Proof. To see that A is an algebra, it is enough to note that given m; and
mgo with associated operators Tp,, and Trm,, Tm; © Ty = Trnym,-

Since the identity has the function 1 as its multiplier, T;, is invertible if
and only if T/, € A, and 1/m € C*(R™ \ {0}) precisely when m(¢) # 0
for any £ € §"71, O

The operator T in (4.15) associated with the polynomial P is thus in-
vertible if and only if P(£) is never zero on S™71, that is, if P(D) is an
elliptic operator. If the coefficients of P are real, then m must be even and
A™ = (—=A)™/2. Thus the problem of solving P(D)u = f reduces to solving
(=A)™/ 24 = T~1f. (For more on this operator, see Section 7.7.)
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6. Singular integrals with variable kernel

Let P(z, D) be a homogeneous differential polynomial with variable coeffi-
cients:

P(z,D)= Y ba(z)D"

la]=m
Since for f € S,
D*f(x) = /R (2mi€)® f(€)e?m = d,
we have that

P(z,D)f(z) = /Rn P(z, 2mi€) f(€)e*™=¢ de.

Further, with A as defined by (4.14), this has a representation analogous to
(4.15):

(4.16) P(z,D)f =T(A™f),
where T is defined by

(@.17) Tfe) = [ oz fe
_ P(z,i£)
o(z,€) = g

The function o is homogeneous of degree 0 in the variable £. If we substitute
the definition of f(£) into (4.17) we get

Tf(:l:) = /Rn 0'(13,£) /R,, f(y)(?"iy{ dy e?mz-f d{

Thus formally,

(4.18) Tf@) = [ Klzz- i),
Rn
where
(4.19) K(z,2) = / o(z,£)e?m e de.
R

In other words, for fixed z, K(z, ) is the inverse Fourier transform of o(z, -).
By Theorem 4.13, for each z there exists a constant a(z) and a function
Qz,-) € C®(S™1) with zero average on S"~! such that

Qz, 2")

2|

K(z,z) = a(z)é(z) + p-v.
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This example is the motivation for studying singular integrals with vari-
able kernel:

. Uz,y")
4.20 Tf(x) = lim
(4.20) f(z) = lim e ol

f(z—y)dy.

We can again apply the method of rotations.

Theorem 4.16. Let Q(z,y) be a function which is homogeneous of degree
0 in y and such that:

(1) Uz, —y) = -Q(z,y);
(2) Q*(u) = sup |Qz, u)| € L}(S™ D).

Then the operator T given by (4.20) is bounded on LP(R"), 1 < p < co.

Proof. Because 2 is odd, we can argue as in the proof of Corollary 4.8
(where the kernel does not depend on z) to get

(4.21) Tf(z) =~ / Q(z,w)Hyf(z)do(u), f€S.
2 fgn-1

Therefore,

m *
75@) < 5 [V IHS @) o)
and the desired result follows at once from Proposition 4.6. a

Theorem 4.17. If in the statement of Theorem 4.16 we replace (2) by

(4.22) sup </sn—l 1Q(z, u)|? do(u))q = By < ®©

z

for some ¢, 1 < ¢ < oo, then T is bounded on LP(R™), ¢’ < p < co.

Proof. Apply Holder’s inequality with exponents g and ¢’ to get

- , 1/¢'
(4.23) i@ < 38, ([ M@ dw)

If we raise this to the ¢’-th power and integrate with respect to = we get
that

ITfllg < Cllfllg-

If condition (4.22) holds for some value of g, then it holds for any smaller
value, so we obtain the desired inequality for all p, ¢ < p < co. O
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When (2 is even there is a result analogous to Theorem 4.17 whose proof
resembles that of Theorem 4.12. It can be found in the first article by
A. P. Calderén and A. Zygmund cited in Section 7.1.

Operators of the form (4.17) are a special class of pseudo-differential
operators. For more information, see Chapter 5, Section 6.9.

7. Notes and further results

7.1. References.

The method of rotations was introduced in an article by A. P. Calderén
and A. Zygmund (On singular integrals, Amer. J. Math. 78 (1956), 289-
309). The examples in Section 1 come from an earlier article by them (On
the ezistence of certain singular integrals, Acta Math. 88 (1952), 85-139)
which will be discussed in Chapter 5. The proof of Theorem 4.12 for even
kernels is taken from course notes by A. P. Calderén (Singular integrals and
their applications to hyperbolic differential equations, University of Buenos
Aires, 1960). It can also be found in the books by Zygmund {22] and Neri
[13]. For a general overview of singular integrals and their applications, see
the survey article by A. P. Calderén (Singular integrals, Bull. Amer. Math.
Soc. 72 (1966), 427-465).

7.2. Spherical harmonics.

A solid harmonic is a homogeneous harmonic polynomial, and its re-
striction to S”~? is called a spherical harmonic. The spherical harmonics
of different degrees are orthogonal with respect to the inner product on
L%(S™"1), and among those of a fixed degree there exists an orthogonal sub-
collection. Thus L?(S™"1) has an orthogonal basis composed of spherical
harmonics. Note that if n = 2, the basis of spherical harmonics for L?(S?)
is just {e*% k € Z}.

The functions Yk(z)e_"'x'z, where Y% is a solid harmonic of degree k, are
eigenfunctions of the Fourier transform:

(Yeta)e™F) (€) = iH¥i(E)eP.

(This is referred to as the Bochner-Hecke formula.)

The utility of spherical harmonics for studying singular integrals is sug-
gested by the following formula: for k£ > 1,

(p . nm’))‘ (€)= itn3 L)

Yl r (%)

Yi(€").
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For a singular integral with Q € L2(S™~!) and even, one can give a dif-
icrent proof of Theorem 4.12 using the decomposition of §2 into spherical
harmonics. (See Stein and Weiss [18, Chapter 6).)

The properties and uses of spherical harmonics can be found in the
books by Stein [15], Stein and Weiss [18] and Neri [13]. Another discussion
of spherical harmonics, as part of the general theory of harmonic functions,
can be found in the book by S. Axler, P. Bourdon and W. Ramey ( Harmonic
Function Theory, Springer-Verlag, New York, 1992).

7.3. Operator algebras.

Besides the operator algebra studied in Section 5, Calderén and Zyg-
mund considered others of the same type. (See Algebras of certain singular
integral operators, Amer. J. Math. 78 (1956), 310-320.) In particular, let
A, be the set of operators

. Q(y")
Tf(z)=af(z)+ hm/
€0 Jiy|>e ly[™
where a € C and Q € LI(S™!). If we define
ITllg = lal + 12 o(sm-1),
then there exists a constant B, which depends only on ¢ such that
T3 0 Tallg < Byl TallglI T2lg-

The set A, is a semi-simple commutative Banach algebra.

For more information on algebras of singular integrals, see the article by
A. P. Calderén (Algebras of singular integral operators, Singular Integrals,
Proc. Sympos. Pure Math. X, pp. 18-55, Amer. Math. Soc., Providence,
1967).

7.4. More on the method of rotations.
In the proof of Theorem 4.17, we could deduce that |Tf|l, < C||fl,
from inequality (4.23) provided that

(1.20) ( L () e asw)” dz) e,

In the proof of Theorem 4.17 we used that inequality (4.24) is immediate if
p > ¢'. However, there are also values p < ¢’ for which (4.24) is true, and
this allows us to improve the theorem.

If f is the characteristic function of the ball, then one can show that
(4.24) cannot hold unless




7. Notes and further results 87

1t is conjectured that if 1 < p < oo and p and ¢’ satisfy this condition, then
inequality (4.24) holds. It is also conjectured that (4.24) holds for this range
of p and ¢’ if Hy is replaced by the associated maximal operator, H, or by
the directional maximal function, M,.

The following results are known: when n = 2 the conjecture for H,
was proved by A. P. Calderén and A. Zygmund (On singular integrals with
variable kernel, Appl. Anal. 7 (1978), 221-238); when n > 3 they proved it
for 1 < p < 2. M. Cowling and G. Mauceri (Inequalities for some mazimal
functions, I, Trans. Amer. Math. Soc. 287 (1985), 431-455) showed that
the same range holds for M,. M. Christ, J. Duoandikoetxea and J. L. Ru-
bio de Francia (Mazimal operators related to the Radon transform and the
Calderon-Zygmund method of rotations, Duke Math. J. 53 (1986), 189-209)
showed that the conjecture is true for all these operators and for p in the
range

1
1<p§max<2,%~).

7.5. LlogL results.

As we noted at the end of Section 2, if @ € Llog L(S™!) is even then
the Fourier transform of p.v.(z')/|z|™ is bounded. Further, Theorem 4.12
can be extended to the case when the even part of Q is in Llog L(S™"1).
(See the first article by Calderén and Zygmund cited in Section 7.1.)

These are the best possible results. In the same paper, Calderén and
Zygmund noted that if ¢ is any function such that ¢(t)/tlogt — 0 ast — oo,
then there exists an even function Q2 such that ¢(Q2) € L}(S"!) but the
Fourier transform of p.v. Q(z')/|z|" is unbounded.

Later, M. Weiss and A. Zygraund (An ezample in the theory of singular
integrals, Studia Math. 26 (1965), 101-111) showed that given any such
¢ there exists an even €2, ¢(Q2) € L!(S™!), and a continuous function
f € LP(R™) for every p > 1, such that for almost every z,

/| ) flz—y)dy
Yy

|>e |y|n

lim sup
e—0

= Q.

7.6. Weak (1,1) inequalities.

Proposition 4.6 does not extend to weak (1,1) inequalities because the
Lorentz space L»® is not a normed space. (See Chapter 2, Section 8.3.)
Hence, we cannot use the method of rotations to prove weak (1,1) inequal-
ities for singular integrals of the type (4.1) or even for the rough maximal
function Mq defined in (4.5). However, the following results are known:
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If Q € Llog L(S™!) then Mg is weak (1,1). For n = 2 this was proved
by M. Christ (Weak type (1,1) bounds for rough operators, Ann. of Math.
128 (1988), 19-42); for n > 2 this is due to M. Christ and J. L. Rubio de
Francia (Weak type (1,1) bounds for rough operators, II, Invent. Math. 93
(1988), 225-237). It is unknown whether Mg, is weak (1,1) if Q € L1(S™1).

If Q € Llog L(S™!) then the operator T in (4.1) is weak (1,1). This
was proved by A. Seeger (Singular integral operators with rough convolu-
tion kernels, J. Amer. Math. Soc. 9 (1996), 95-105). Partial results were
obtained earlier by M. Christ and J. L. Rubio de Francia (in the above
papers) and by S. Hoffman (Weak (1,1) boundedness of singular integrals
with nonsmooth kernels, Proc. Amer. Math. Soc. 103 (1988), 260-264).
By the counter-examples given above this is the best possible result for
T for arbitrary 2. However, it is unknown whether T' is weak (1,1) when
Q € L}(S" 1) and is odd. P. Sjogren and F. Soria (Rough mazimal operators
and rough singular integral operators applied to integrable radial functions,
Rev. Mat. Iberoamericana 13 (1997), 1-18) have shown that for arbitrary
Q € LY(S™ 1), T is weak (1,1) when restricted to radial functions.

7.7. Fractional integrals and Sobolev spaces.
If ¢ € S then

(~Ag) (&) = 4m°|¢1*8(£);
in Section 5 we defined the square root of the operator —A by
(Ag) (&) = 2ml€|(¢)-

More generally we can define any fractional power of the Laplacian by

((-)729) (&) = (2rleDede)

Comparing this to the Fourier transform of |z|™%, 0 < a < n (see (4.3)), we
are led to define the so-called fractional integral operator I, (also referred
to as the Riesz potential) by

1 3(y)
Lé(z =_/ W) _ g
M= e S e
where
2-a F(%)
Yo =T2 n—ay "
r(%3°)

Then with equality in the sense of distributions,

(Ia9) (&) = [€]7°0(€).
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If we consider the behavior of I, on LP, then homogeneity considerations
show that the norm inequality

(4.25) ILafllg < Clifll

can hold only if

(4.26) -
g p n

In fact, this condition is also sufficient for 1 < p < n/a.

Theorem 4.18. Let0 < a <n,1<p<n/a, and define q by (4.26). Then
(4.25) holds. If p=1 then I, satisfies the weak (1,n/(n — a)) inequality

n/(n—a)
|heW’mﬂmbAH<C(Wm) :

For a proof, see Stein [15, Chapter 5]. Another proof uses the following
inequality due to L. Hedberg (On certain convolution inequalities, Proc.
Amer. Math. Soc. 36 (1972), 505-510):

(4.27) Lf(z) < Gl fIg?"Mf(e)*?/*,  1<p<nfa,

where M is the Hardy-Littlewood maximal function. To prove it decompose
the integral defining I, into two parts, one over {z : |z — y| < A} and the
other over {z : |z — y| > A}; apply Proposition 2.7 to the first part and
Holder’s inequality to the second. Now choose A so that both terms are the
same size. Theorem 4.18 then follows from (4.27) and from the boundedness
of M.

Closely related to the fractional integral operator is the fractional max-
imal function,

Maf(@) = sup i /lfz—y)ldy, 0<a<n.

IB |1 a/n

M, satisfies the same norm inequalities as I,. The weak (1,n/(n — a))
inequality can be proved using covering lemma arguments (see Chapter 2,
Section 8.6), and M, is strong (n/a,00): by Holder’s inequality

1 e a/n
e f, e -aldvs ([ 1fe=nrea)” <l

The strong (p, ¢) inequalities then follow by interpolation.

For any positive f it is easy to see that M, f(z) < CI,f(z). The reverse
inequality does not hold in general, but the two quantities are comparable
in norm.
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Theorem 4.19. For 1 < p < o0 and 0 < a < n, there exists a constant
Cap such that

Hafllp < CapliMafllp-

This result is due to B. Muckenhoupt and R. Wheeden ( Weighted norm
inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974),
261-274). Also see D. R. Adams, A note on Riesz potentials (Duke Math.
J. 42 (1975), 765-778) and D. R. Adams and L. Hedberg (Function Spaces
and Potential Theory, Springer-Verlag, Berlin, 1996).

An important application of Theorem 4.18 is in proving the Sobolev
embedding theorem. For 1 < p < oo and k > 1 an integer, define the
Sobolev space L} (R™) to be the space of all functions f such that f and
all its derivatives (defined as distributions) up to order k are in LP. More
precisely, let LZ be the closure of C2° under the norm

I£lz =D ID*fll».
lal<k
Theorem 4.20. Fiz 1 <p < oo and k > 1 an integer. Then
(1) if p < n/k, then LY(R™) C L"(R™) for allr, p < r < q, where
1/¢=1/p—k/n;
(2) if p=n/k, then LY(R™) C L™(R™) for allr, p < r < o0;

(3) if p>n/k and f € LY(R™), then f differs from a continuous func-
tion on a set of measure 0.

This result is due to S. L. Sobolev (On a theorem in functional analy-
sis, Mat. Sb. 46 (1938), 471-497; English translation in Amer. Math. Soc.
Transl. ser. 2, 34 (1963), 39-68).

For all the results in this section, see Stein [15, Chapter 5], the book
by Adams and Hedberg cited above, and the books by R. Adams (Sobolev
Spaces, Academic Press, New York, 1975) and W. Ziemer (Weakly Differ-
entiable Functions, Springer-Verlag, New York, 1989).



Chapter 5

Singular Integrals (II)

1. The Calder6n-Zygmund theorem

In the previous chapter we used the Hilbert transform to study singular
integrals. In this chapter we are going to consider singular integrals whose
kernels have the same essential properties as the kernel of the Hilbert trans-
form. This will let us generalize Theorem 3.2 to get the following result.

Theorem 5.1 (Calderén-Zygmund). Let K be a tempered distribution in
R™ which coincides with a locally integrable function on R™\ {0} and is such
that

(5.1) |K ()| < 4,

(5.2) / |K(z —y) — K(z)|de < B, ye€R™
lzi>2[y]
Then for 1 < p < oo,

1K * fllp < Cpll fllp»

and

e € B": K« )] > A} < Sl

We will show that these inequalities are true for f € S, but they can be
extended to arbitrary f € L? as we did for the Hilbert transform. Condition
(5.2) is usually referred to as the Hérmander condition; in practice it is often
deduced from another, stronger, condition called the gradient condition.

91
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t'roposition 5.2. The Hérmander condition (5.2) holds if for every x # 0

C
(5.3) VK (z)| < Ehes

This follows from the mean value theorem; details are left to the reader.

Proof of Theorem 5.1. Since this proof is (essentially) a repetition of the
proof of Theorem 3.2, we will omit the details.

Let f € Sandlet Tf = K« f. From (5.1) it follows that ||Tf||2 < A| f|l2-
It will suffice to prove that T is weak (1, 1) since the strong (p, p) inequality,
1 < p < 2, follows by interpolation, and for p > 2 it follows by duality since
the adjoint operator T has kernel K*(z) = K (~x) which also satisfies (5.1)
and (5.2).

To show that f is weak (1,1), fix A > 0 and form the Calderén-Zygmund
decomposition of f at height A. Then, as in Theorem 3.2, we can write
f = g+b, where ¢ € L? and is bounded by 2"\ and b is the sum of
functions which are supported on disjoint cubes @; and have zero average.
The argument now proceeds as before, and the proof reduces to showing
that

(5.4) /R"\Q; |Tb,(x)] dx < C/Q,- |bj(z)| dz,

where Q; is the cube with the same same center as ); and whose sides
are 2y/n times longer. Denote their common center by ¢;. Inequality (5.4)
follows from the Hormander condition (5.2): since each b; has zero integral,

ifr¢Q;
T = | K -us)dy= | (-0 - K- ) dy

hence,

[ m@ids | lbj(y)|< / IK(w—y)—K(z—cj)ldz> &
R™A\Q; Q; R™\Q?

Since
R™\Q; C {z €R": [z~ ;| > 2ly — ¢},
the term in parentheses is bounded by B, the constant in (5.2). O
We now consider singular integrals with a homogeneous kernel of degree

—n, such as we studied in the previous chapter: K(z) = Q(z')/|z|". What
must we assume about § for the Hérmander condition (5.2) to hold? Clearly,
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2 € C1(S™71) is sufficient by Proposition 5.2. But much weaker conditions
are sufficient. For example, define

Woo (t) = sup{|Q(w1) — Q(uz)| : |u1 ~ ug| < t, ug,up € S* 1}
Then we have the following result.

Proposition 5.3. If Q2 satisfies

(5.5) /01 ﬁ# dt < oo,

then the kernel Q(z')/|xz|™ satisfies (5.2).

Condition (5.5) is referred to as a Dini-type condition.

Proof.
|z -vy)) Q)
K-y - K(o) = | =) - 20
2@ -9)-0@) o] 11
S R e

Condition (5.5) implies that € is bounded, so on the set {|z| > 2|y|} the
second term is bounded by C|y|/|z|**!. Thus its integral on this set is finit e.

On this set we also have that

|yl
-y - x, S 4—1
I( ) | 2]
SO
/ [S2((z —y)) = Q| / woo(4lyl/lal) ,
lz/>2ly| lz —y[" T Jigpso (zl/2)m
2 Woolt)
= 2"|S"‘1|/ 2 dt
0 t
<C.

For similar results, see Section 6.2.

From Proposition 5.3 and Corollary 4.5 we immediately get the following
corollary to Theorem 5.1.

Corollary 5.4. If Q is a function defined on S™! with zero integral and
satisfying (5.5), then the operator
Q(y')

Tf(:c):p.v./ A
& 1Yl
is strong (p,p), 1 < p < 00, and weak (1,1).

flz—y)dy
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Since (5.5) implies that 2 is bounded, we already had the strong (p, p)
wequality via the method of rotations. Nevertheless, we now also have the
weak (1,1) inequality.

2. Truncated integrals and the principal value

In Theorem 5.1 we assumed that the operator was bounded on L? (via the
hypothesis that K € L*°). In this section we give conditions on K which
imply this property and which make the associated operator bounded on LP,
1 <p<oo. Given K € Lj, (R"\ {0}), define K¢ r(z) = K (Z)X{e<|z|<R}-

loc

Proposition 5.5. Let K € L1 (R™\ {0}) be such that

loc

(5.6) / K(z)dz| <A, 0<a<b<oo;
a<|z|<b
(5.7) [ K@ld<B, >0
a<|z|<2a
(5.8) / K(z-y) - K(@)|dz <C, yeR™
|z]>2[yl

Then for all £ € R™, |I?:R(§)| < C, where C is independent of € and R.

Condition (5.7) is equivalent to
(5.9) / |z||K (z)|dz < B'a, a>0.
|z|<a

To see this, note that

[e o] o
/ |lz|| K (z)] dx < Z/ |z|| K (z)|dz < ) 27%aB,
|z|<a k=p 2 Fla<|z|<27%a

k=0

and

/ K (2)|dz < / 12l g (@) dz < 28"
a<|zr|<2a a

|z|<2a

Proof. If we fix £ then whenever € < |¢]7! < R,

Kon(€) = / K(z)e 2% ¢ dg

e<|z|]<R

= / K(z)e ?m =8 dg / K(z)e ?*t dz
e<lz|<l¢l? €= <|z|<R

=1+ I,.
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(If |67 < e or if |¢|71 > R, then it suffices to consider just one of the two
integrals.) We treat I first:

L = / K(z)dz +/ K(x)(e 28 _ 1) dz,
e<|z|<¢}=1 e<|z|<[¢7?

SO

L < + 2m[¢] |z]|K ()| dz < C(A + B).

e<|z|<[¢]~1

/ K(z)dz
e<|z|<|g] !

To evaluate I, let 2 = 2£|¢|72, so that exp(2miz - £) = —1; then if we
make the change of variables z +— z — z in Iy we get

I,=— / K(x — 2)e” =€ 4.
l¢|]-t1<|z—2|<R

Hence,

2l = / K(x)e 2™ dg ~ / K(zx — z)e” ™= g,
el <lz|<R g~ <|z—z|<R

this in turn implies that

2Ly < /|:|—1<| K@)~ K= )|z

+/ |K (z)| dz
L1EI- 1 <lz|<31e) 2

+/ |K(z)|dz.
—3l€lm <|zl<R+ g1~

The first integral is bounded by C since |¢|™! = 2|z|. The other two
integrals are bounded by 2B: since |¢|™! < R, R+3[¢|7! < 3(R-3¢|71). D

Corollary 5.6. If K satisfies the hypotheses of Proposition 5.5, then
[Ke,r * fllp < Gl fllp, 1 <p<oo,

and
n C1
{z €R™ : [Ker* f(2)] > AH < I,
with constants independent of € and R.

When p = 2 this result follows immediately from Proposition 5.5; for
the rest note that (5.8) implies the Hormander condition,

/ |Ke,r(z —y) — Ker(z)|dz < C,
lzl>2]y|

with C independent of € and R. The details are left as an exercise for the
reader.
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When the kernel is homogeneous, K(z) = (z')/|z|", conditions (5.6)
and (5.7) are equivalent to Q € L}(S™~1) and

Qu)do(u) = 0.
Sn—l

Since K, g € L', K¢ g * f is well defined for f € LP. Ideally we could
define the singular integral T' by the pointwise limit

Tf(z)= lim K.r+ (),
R—oco
but this limit need not exist even if f € S. In this case we have convergence

as R — 00, so the problem reduces to determining when the principal value
distribution of K,

pv.K(@)=lim [ K(@)é(z)dz, ¢€S,
=V J|r)>e

exists.

Proposition 5.7. Given a function K which satisfies condition (5.7), the
tempered distribution p.v. K exists if and only if

lim K(z)dz
=0 Jeclz|<1

exists.

Proof. Suppose that the tempered distribution exists. If we fix ¢ € S which
is identically 1 on B(0,1), then

p.v. K(¢) = lim K(z)dz + K(z)¢(z)dz.
€0 Jec|z|<1 Jz|>1

The second integral exists since

[ IK@s@]de < el 2 / K (z)|dz < 2B]||z|]os-
lz|>1 k=0 2

k<|I|52k+l
Therefore, the limit of the first integral must also exist.
Conversely, suppose the limit exists; denote it by L. Then
pv.K@) =60L+ [ K@@ -0 da+ [ K@)l da.
lz|<1 |z|>1

Again, the second integral always exists. The first integral exists since
|¢(z) — ¢(0)] < |=[[|V4|oo, and so by (5.9)

/ IK(2)]|6(z) — 6(0)] dz < [Volloe / 121K (z)| dz < 2B]|V6lco.
lr|<1

lzl<1

O
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Corollary 5.8. If we add to the hypotheses of Proposition 5.5 the assump-
tion that

lim K(z)dz

€0 Je<|z|<1

exists, then

Tf(z) = lim K@y)f(z-y)dy
[yl>e
can be extended to an operator which is bounded on LP, 1 < p < 0o, and is
weak (1,1).

Example 5.9 (An application to K(z) = |z|~""%). The function |r| "%
is locally integrable on R™ \ {0} and satisfies the hypotheses of Proposition
5.5. In fact,

—it

2
= |5 1|—— < st
t

/a<|r|<b ||t
d
/ 9T 5m1)log,

a<|z|<2a Izl"
|n + it|

IVK(z)| < W

Hence, ||Ke,r * fll; < Cpll fllp with Cp independent of € and R.
However, the limit of the truncated integrals does not exist almost ev-

erywhere since
/ dn+1t | - | _it
e<|z|<1 'I |

and the limit of e~* as € — 0 does not exist. The limit does exist if we
choose an appropriate subsequence {ex}, for example, e, = e 275/t If we
take this sequence then

. _ flz—y) — f(=2) flz-y)
k,kTmek,R* f(z) —/ y|rt dy+/1y|>1 [yt ay,

lyl<1

and this defines an operator which is strong (p,p), 1 < p < o0, and weak
(1,1). This operator is the convolution of f with the tempered distribution
which we will refer to as p. v. |z|~""%, even though it depends on our choice
of the sequence {ex}:

1 _ ¢(z) — $(0) #(z)
p.-Vv. |x|n+u(¢) = /|z|<1 ||t dz + /|I|>1 ||t dzx
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Dexpite its appearance this distribution is not homogeneous of degree
—n — it (see Definition 4.2); that is, it does not satisfy

1 o 1
PV o (82) = 47" ”P-V-W(‘f’)’

where ¢)(z) = A™"¢(A"!z). This can be shown by a straightforward com-
putation, but here we are going to give an indirect argument which also
yields its Fourier transform.

Given z such that Rez < n, the function |z|~? is locally integrable and
homogeneous of degree —z. It defines a tempered distribution which is also
homogeneous of degreec —z:

L[4
@7 ) el

We can rewrite this as

1 _ ¢(z) — ¢(0) dz ¢(z)
(¢) = /III<1 ——"2dzx + ¢(0) +/| dz

R || lz|<1 [ER o>1 |z]?
_ ¢(z) — 4(0) , (@) , i o
/|r|<1 |z[* i ~/Irl>1 ol s o(0);

this expression makes sense for Re z < n+1 except if z = n. This distribution
is homogeneous of degree —z, and if we let z = n + it, we see that it differs
from the one we call p.v.|z| "% by a multiple of the Dirac delta. (This
is homogeneous of degree —n, which implies that p.v.|z| " % cannot be
homogeneous.) This new distribution is thus the unique distribution that
is homogeneous of degree —n — it and which coincides away from the origin
with the locally integrable function |z|~™~%.
Given the Fourier transform of |z|~* (see (4.3)),

(&) ©@=riilE)l 2

|| r(z) [g~=
if we let z = n + it we get the Fourier transform of the homogeneous distri-
bution, which in turn gives us the Fourier transform of p.v. |z|™~%:

1\ nag D(3) 0 1
(P-V-W) (E)=W?+"5(Liﬁ)7|£l"+ﬁl~9" Y.
2

3. Generalized Calderén-Zygmund operators

Up to this point the operators we have been studying could be written as
convolutions with tempered distributions. One practical advantage of this
hypothesis is that we could use the Fourier transform to deduce the L2
boundedness of the operator. If we assume this then the boundedness on



3. Generalized Calderén-Zygmund operators 99

the remaining LP spaces only depends on the Hérmander condition, which
can be adapted to operators which are not convolution operators.

Let A be the diagonal of R™ x R™: A = {(z,z) : z € R"}. By a proof
nearly identical to that of Theorem 5.1 we can show the following.

Theorem 5.10. Let T be a bounded operator on L2(R™), and let K be a
function on R™ x R™\ A such that if f € L?(R™) has compact support then

Tf@)= [ K@uft)d, o sm(f)

Further, suppose that K also satisfies

(5.10) / K (z,y) - K(z,2)|dz < C,
lz—y|>2|y—z|

(5.11) / (K (z,y) ~ K(w,3) dy < C.
lz—y|>2|z—w]|
Then T is weak (1,1) and strong (p,p), 1 < p < o0.

The given representation holds only for functions in L? of compact sup-
port, but this suffices for the proof since it is only applied to the functions
b, gotten from the Calderén-Zygmund decomposition. condition (5.10) is
used to prove the weak (1,1) inequality for T, and condition (5.11) is used
to prove the same inequality for its adjoint.

Following the terminology of Coifman and Meyer [2], we say that K :
R" x R*\ A — C is a standard kernel if there exists § > 0 such that

c
5.12 K(z,y)l < ——,
(5.12) Kl < oo
. ly—=z° .
(5.13) |K($,y)—K(-"3,2)|SCix_y|n+5 if Jz—yl>2y-z
|z — wl®

(5.14)  |K(zy) - K(w,y)|<C if |z-yl>2z-wl

|z —y[n+?
Standard kernels clearly satisfy the Hormander conditions (5.10) and (5.11).
The following are examples of operators which have this type of kernel.

(1) The Cauchy integral along a Lipschitz curve. Let A be a Lipschitz
function on R (i.e. A’ = a € L*®) and let ' = (¢, A(t)) be a plane curve.
With this parameterization we can regard any function f defined on I" as a
function of t and conversely. Given f € S(R), the Cauchy integral

1 [ f()(Q +ia(?t))
Crf(z) = — o dt
rf(5) =55 o tHiA() -2
defines an analytic function in the open set

Q={z=z+iye C:y> A(z)}.
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Its boundary values on T,
lim Crf(z +14(A(z) + ¢€)),

are given by

1 i f(&)(1 +ia(t))
= z)+ — lim - —— dt| .
2 |:f( ) T e—0 lz—t|>€ r—t+ Z(A(I) - A(t))
This leads us to consider the operator
Tf(z) =lim /W) dy,

€20 Jjz—y|>e T~ Y + Z(A(x) - A(y))
whose kernel,
1
z—y+i(Alz) — A®y))’
satisfies (5.13) and (5.14) with § = 1.

(2) Calderén commutators. If ||A'[|lo then we expand the kernel (5.15)
as a geometric series:

K(zy) = - i(ﬁ(m)—A(y))’ﬁ

Y. T—Yy

(5.15) K(z,y) =

It is, therefore, natural to consider the following operators: given a Lipschitz
function A on R and an integer k > 0, define

k
Tif(z) = lim (A(m)—A(y)) fy) dy.
|z—y|>e

e—0 -y T—y

The associated kernels,

Ki(z,y) = (

are also standard kernels with 6 = 1.

Alz) - Aly) )" 1

T—y z—y’

Definition 5.11. An operator T is a (generalized) Calderén-Zygmund op-
erator if
(1) T is bounded on L?(R™);
(2) there exists a standard kernel K such that for f € L? with compact
support,

T/ = [ K@i)du, o sum(s)

Theorem 5.10 implies that a Calderén-Zygmund operator is bounded on
L?,1 < p < oo, and is weak (1,1). Hence, given an operator with a standard
kernel, the problem reduces to showing that it is bounded on L2. We will
return to this question in Chapter 9.
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4. Calderén-Zygmund singular integrals

The examples in the previous section suggest that for any Calderén-Zygmund
operator,

Tf(z) = lim K(z,y)f(y) dy,

€=0 Jiz—y|>e

at least for f € S. However, this is not necessarily the case. From (5.12) we
can deduce that

T.f(z) = /| K@
T—Y|{>€

makes sense for f € S(R™). Nevertheless, the limit as ¢ — 0 need not exist
or may exist and be different from Tf(z). An example of the first is the
operator we defined in Section 2 as convolution with p.v.|z|~""%, whose
kernel, K(z,y) = |z — y|™™ %, is standard. (Recall that this operator is
strong (2,2) and so a Calderén-Zygmund operator.)

By an argument identical to that in Proposition 5.7 we can prove the
following result.

Proposition 5.12. The limit

(5.16) lin%TEf(z)
€—
exists almost everywhere for f € C° if and only if
lim K(z,y)dy
=0 Jecz—y|<1

exists almost everywhere.

The existence of the limit (5.16) does not imply that it is equal to T f(z):
for example, consider the identity operator I. This is a Calderén-Zygmund
operator associated with the kernel K(z,y) = O—clearly, If(z) = 0if z ¢
supp(f)—but (5.16) equals 0.

Furthermore, this example shows us that an operator is not characterized
by its kernel since the zero operator also has the zero kernel. In general,
so does any pointwise multiplication operator Tf(z) = a(z)f(z), a € L.
However, these are the only ones; this is shown by the following result whose
proof is left to the reader.

Proposition 5.13. If two Calderdn-Zygmund operators are associated with
the same kernel, then their difference is a pointwise multiplication operator.

It is important to assume that a Calderén-Zygmund operator is bounded
on L? since without this or a similar hypothesis, Proposition 5.13 would be
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false. For example, the derivative is an operator with kernel 0 (f'(z) = 0 if
z ¢ supp(f)) but it is not a pointwise multiplication operator.

A Calderén-Zygmund singular integral is a Calderén-Zygmund operator
that satisfies

(5.17) Tf(z) = lim T f(z).

To determine when this equality holds for f € LP(R"™), we will proceed as
we did for the Hilbert transform and examine the maximal operator

T* f(z) = sup |Tc f(z)]-
>0
By Theorem 2.2, if T* is weak (p,p) then the set
{felL”: lin(l)Tef(z) exists a.e.}

is closed in LP. Hence, if (5.17) holds for a dense subset, say f € C°, then
it holds for any f € LP.

Theorem 5.14. If T is a Caldeién-Zygmund operator then T™* is strong
(p,p), 1 <p < o0, and weak (1,1).

The proof of Theorem 5.14 depends on the following result which is
analogous to Cotlar’s inequality (Lemma 3.5).

Lemma 5.15. If T is a Calderén-Zygmund operator then for any v, 0 <
v <1, and for any f € C°,

(5.18) T* f(2) < C, (M(TS1) (@) + M{ ().

To prove this we need the following result due to Kolmogorov.

Lemma 5.16. Given an operator S which is weak (1,1), v, 0< v < 1, and
a set E of finite measure, there ezists a constant C depending only on v
such that

/E SF(@) dz < CIEI £,

Proof. By (2.1) and the weak (1, 1) inequality,

/ 1Sf(2)|" do = u/oo Nz € B:]Sf(@) > A} dx
E 0
had C
<o [T 3t (121,510 ) o

ClifIh/IE| -~ )
= 1// NTYE|dA + ,,/ CA72||fllh d.
0 Clfli/IE]
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The desired inequality follows from this immediately. O

Proof of Lemma 5.15. We will prove that
T.f(0) < C (M(Tf)(0)""* + M{(0))

with C independent of €. Our argument will be translation invariant and so
actually yields (5.18).
Fix € > 0; let Q = B(0,¢/2) and 2Q = B(0,¢), and define f; = fx20
and fo = f — f1. Then
T£(0) = " K(0,y)f(y) dy = T.£(0)-
y|>e

If z € @ then, since K is a standard kernel,

T f2(2) = Tf2(0)| =

/| (K - KO )y
y|>e

16 |f ()l
< Cld /|y|>5 y|n+e %

ccoy / W)l
2

- k=0 Y 2Fe<|yl<2Ftle |yln+6

> 1
<oy om_L / d
@ Jyesenre |f(y)] dy

k=0
< CsM £(0).

It follows from this inequality that
(5.19) ITef(0)| < CMf(0) + |Tf(2)| + T f1(2)]-

If T.f(0) = O then there is nothing to prove. If not, fix A such that
0 <A< |T:f(0)] and let

Q1={z€Q:Tf(z)| > A/3},
Q:={z€Q:|ThH(2)|>A/3},

and

Qs = I CMF(0)<N/3,
ST 1Q ifCMf(0)> N3

Then Q = Q1 UQ2UQ3, so [Q] < [Q1] + |Q2] + |Q3]. However,

@3 [ TieIe < SIRMEn o)
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and by the weak (1, 1) inequality for T,

3C

@l = [z € @: ITA ()] > M3} < °F [ 17l dz < Ciaims)
Q

If Q3 = Q then A < 3CM f(0); if Q3 = @ then

Q1< Qi1+ 12l < S1QIM(T)(0) + M (0)).
Hence, in every case we have that
A< C(M(TF)(0) + Mf(0)).

This is true for any A < |T, f(0)| and so (5.18) holds when v = 1.
If 0 < v < 1, then it follows from (5.19) that

ITef(0)]” < CMF(0)" + |Tf(2)]” + ITf1(2)]".

If we integrate in z over @, divide by |@| and raise to the power 1/v, we get

1 1/v
TfO)F < © (Mf(0)+M(ITfI”)(0)‘/”+ (@ /Q lel(zw’dz) )
By Lemma 5.16,

1 1/v
(i [ ra@re) " <ciaria < cmso,
Q1 Jo
and this completes the proof. a

Proof of Theorem 5.14. Inequality (5.18) with » = 1 immediately im-
plies that T is strong (p, p) since both T and M are.

To show that 7™ is weak (1,1) we could argue as we did in the proof of
Theorem 3.4; instead we will give a different proof which uses (5.18) with
v < 1. From this inequality we have that

{z € R™: T*f(z) > A} <{z € R™ : Mf(z) > A/2C}|
+|{z € R™: M(ITf|")(z)"/* > \/2C}|,

and the first term on the right-hand side satisfies the desired estimate. As
for the second term, by Lemma 2.12

{z € R": M(ITf")(@)'" > A} < 2"{z € R" : My(ITf)")(z) > 47N},

where My is the dyadic maximal operator (2.9). Let £ = {z € R" :
My(|ITf|")(z) > N}; then E has finite measure if f € C. But then

B < 5 [T
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by the proof of Theorem 2.10 it suffices to take the integral over E instead
of all of R™. Therefore, by Lemma 5.16

|E| < CW|EI'™||FIIY-
The desired inequality now follows if we replace \¥ by 47"\". O

5. A vector-valued extension

Let B be a separable Banach space. A function F from R" to B is (strongly)
measurable if for each b € B* (the dual of B) the map = — (F(x),b') is
measurable. If F' is measurable then it follows that the scalar function
z — ||F(z)||g is also measurable. Therefore, we can define LP(B) as the
space of (equivalence classes of) measurable functions from R™ to B such
that

1/p
1F Lo s = ( [ ir@i dx) <o, 1<p<oo,

and || fllo = sup{||F(z)llg : = € R"}. The space LP(B), 1 < p < oc, is a
Banach space.

If f is a scalar function in LP and b € B, define the function f - b from
R™ to B by (f - b)(z) = f(z)b. This function is in LP(B) and its norm is
[l /ipibll B- The subspace of LP(B) consisting of finite linear combinations of
functions of this type, denoted by LP ® B, is dense if 1 < p < oco.

Given F = 3. f; - b; € L' ® B, define its integral to be the element of

B given by
/" (z)dz = (/ fJ:c)dz)

The map F — [ F(z)dz extends to L!(B) by continuity. For a function
F € L(B), this integral is the unique element of B that satisfies

< / F(a) da:,b’> - [R (F(2),V) do
for all ¥ € B".

If F € LP(B) and G € L¥ (B*), then (F,G)(z) = (F(z),G(z)) is inte-
grable; furthermore,

Gl e =00 {| [P0, Glo da: 1Pley <1}

From this we see that L (B*) C (LP(B))*. Equality is not true in general,
but is, for example, if 1 < p < co and B is reflexive.

Let A and B be Banach spaces and let £L(A, B) be the space of bounded
linear operators from A to B. Suppose that K is a function defined on
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R™ x R™ \ A which takes values in £(A, B) and T is an operator which has
K as its associated kernel: if f € L>°(A) and has compact support, then

Tf(0) = [ K@) f0)dy, o ¢ supp(f).
For such operators there is a vectorial analogue of Theorem 5.10.

Theorem 5.17. Let T be a bounded operator from L™(A) to L™(B) for some
r, 1 <r < oo, with associated kernel K. If K satisfies

6o 1K (z.9) - K(2,2)|cap) dz < C,
Jz—y|>2]y—2|

(5.21) / 1K (2,9) — K(w,9)llcam dy < C,
lz—y|>2|z~w|

then T is bounded from LP(A) to LP(B), 1 < p < oo, and is weak (1,1), that
18,

o € R IT@)5 > M < S s

The proof of Theorem 5.17 initially follows the outline of the scalar re-
sult: inequality (5.20) together with the boundedness from L"(A) to L"(B)
vields the weak (1,1) inequality; then the Marcinkiewicz interpolation the-
orem (which can easily be shown to be true in these spaces) shows that T
is bounded for 1 < p < r.

To prove that T is bounded for r < p < oo we must pass to the adjoint
operator. However, this presents a problem since, as we noted above, jid (A*)
need not be equal to LP(A)*. When 4 is reflexive (and it will always be so
in our applications in Chapter 8) they are equal, and in that case it is
enough to note that the kernel associated with the adjoint operator T* is
K(z,y) = K*(y,z) € L(B*, A*). Inequality (5.21) for K is equivalent to
(5.20) for K, so by repeating the above argument we get that T* is bounded
forl<p<r.

When L”' (A4*) # LP(A)* we must first consider the finite dimensional
subspaces of A. Given such a subspace Ag, let Tp : L™(Ag) — L"(B) be
the restriction of T to functions with values in Ag. The kernel associated
with Tp is Ky € L(Ag, B), the restriction of K to Ap. Since || Kpl| < K},
inequalities (5.20) and (5.21) hold for K with constants independent of the
subspace Ag. Therefore, arguing as before,

Ty : LY(B*) — LY(Af), l<g<r,
with a constant independent of Ag. So by duality, Tp is bounded from

LP(Ap) to LP(B), r < p < oo, with a constant independent of Ag. That it
is bounded on all of LP(A) now follows since LP ® A is dense in LP(A).
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We leave it to the reader to fill in the details of the outlined proof of
Theorem 5.17 by following the scalar model.

6. Notes and further results

6.1. References.

The Calderén-Zygmund decomposition and its application to proving the
weak (1,1) inequalities for singular integrals appeared in the classic article
by both authors (On the existence of certain singular integrals, Acta Math.
88 (1952), 85-139). In this article they used the gradient condition (5.3);
L. Hormander first observed that (5.2) is sufficient (Estimates for trans-
lation invariant operators in LP-spaces, Acta Math. 104 (1960), 93-139).
Also see Stein [15]. Proposition 5.5 is due to A. Benedek, A. P. Calderén
and R. Panzone (Convolution operators with Banach-space valued functions,
Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365). The tempered distribu-
tion p.v.|z| ™ * and its generalizations were first considered by B. Mucken-
houpt (On certain singular integrals, Pacific J. Math. 10 (1960), 239-261).
For more on generalized Calderén-Zygmund operators, consult Coifman and
Meyer (2], Journé [8] and Stein [17]. The Cauchy integral has a long his-
tory: see, for example, the book by N. T. Mushkelishvili (Singular Integral
Equations, P. Noordhoff, Groningen, 1953). The associated commutators
were first studied by A. P. Calderén (Commutators of singular integral op-
erators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099). Commutators
are discussed again in Chapter 9. For more on vector-valued singular in-
tegrals see Garcia-Cuerva and Rubio de Francia [6, Chapter 5], the article
by J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea ( Calderdn- Zygmund
theory for operator-valued kernels, Adv. in Math. 62 (1986), 7-48) or the
monograph by J. L. Torrea (Integrales Singulares Vectoriales, Notas de Al-
gebra y Andlisis 12, Univ. Nacional del Sur, Bahia Blanca, 1984).

The survey article by C. Fefferman (Recent progress in classical Fourier
analysis, Proceedings of the I.C.M. (Vancouver, B.C., 1974), Vol. 1, pp. 95-
118, Canad. Math. Congress, Montreal, 1975) contains a succinct discussion
of singular integrals and their connection to many other problems in analysis.

6.2. A more general Dini-type condition.

The Hérmander condition (5.2) holds for kernels of the form K(z) =
Q(z')/|z|™ under weaker hypotheses than those in Proposition 5.3. Given
p € O(n), let

loll = sup{|u — pu| : w € S*7'}.
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If we define

wi(t) = sup / 12(pu) — Q(u)| do(w),
[lol| <t J Sn-1

then the Dini-type condition

1
/ wi(t) dt < 00
0 t

implies that (5.2) holds for K. This condition also implies that € L log* L.
This result is due to A. P. Calderén, M. Weiss and A. Zygmund (On the
existence of singular integrals, Singular Integrals, Proc. Sympos. Pure Math.
X, pp. 56-73, Amer. Math. Soc., Providence, 1967). Later, Calder6n and
Zygmund proved that this condition is also necessary for the Hormander
condition to hold (A note on singular integrals, Studia Math. 65 (1979),
77-87).

6.3. Nonisotropic dilations.
The Euclidean norm | - | on R" is associated with a family of dilations
8i(z) = (tx1,... ,tzn)

in the sense that |6, ()| = t|z|, t > 0, z € R™.

Given ay,... ,a, > 0, we can define a family of dilations that act on
each variable differently:

8e(x) = (t%x1, ... 1o zy).

Then for each d; there exists a quasi-norm | - || such that
l6:(z)| = tlizll
and if z € S™? then ||z|| = 1. Define || - || as follows: given z € R™, there

exists a unique ' € S"~! such that 6;(z’) = z for some t > 0. Let ||z|| = ¢.
This is not an actual norm since the triangle inequality is only satisfied up
to a constant L > 1:

Iz +yll < L(l<]l + [lyl)-

Given R™ with this quasi-norm we can get results analogous to Theorem
5.10 by considering conditions like

/ IK(z,y) — K(z,2)|de < C
llz—yll>2}jy—=zll

and the symmetric condition gotten by changing the order of the variables.

This kind of singular integral appears primarily in connection with the
parabolic operators introduced by E. Fabes and N. Riviere (Singular in-
tegrals with mized homogeneity, Studia Math. 27 (1966), 19-38). Also see
C. Sadosky (On some properties of a class of singular integrals, Studia Math.
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27 (1966), 73-86) and M. de Guzmén (Singular integral operators with gen-
eralized homogeneity, Rev. Acad. Ciencias Madrid 64 (1970), 77-137). In
Chapter 8, Section 7, we will use the method of rotations to study the kernels
associated with this structure.

6.4. Spaces of homogeneous type.

Singular integrals can be studied in very general spaces. R. Coifman and
G. Weiss considered this question in their book Analyse harmonique non-
conmutative sur certains espaces homogénes (Lecture Notes in Math. 242,
Springer-Verlag, Berlin, 1971). For a discussion in a slightly less general
setting, see Stein [17, Chapter 1].

Let X be a space with pseudo-metric p, that is, a function p: X x X —
[0,00) such that

(1) p(z,y) =0 if and only if z = y;

(2) plx,y) = oy, z);
(3) there exists L > 0 such that p(z, 2) < L(p(z,y) + p(y, 2))-

A space of homogeneous type is a topological space X with a pseudo-metric
p such that the balls B(z,r) form a basis of open neighborhoods of X, and
there exists a positive integer N such that for any z € X and r > 0, the ball
B(z,r) contains at most N points z; such that p(z;, ;) > /2. The second
property holds if there exists a Borel measure u on X such that

0 < u(B(z,r)) < Ap(B(z,1/2)) < oo.
(Such a measure p is called a doubling measure. We first discussed doubling
measures in Chapter 2, Section 8.6.)

If X is a space of homogeneous type, then given a kernel K(z,y) €
L*(X x X,du ® du) we can define the operator

Tf() = [ K@) i) duto)
If ||Tfllg £ Cqll fllq for some ¢ > 1, and if for any y,z € X,

(522) IK(LL‘, y) - K(:E,Z)I d/.l.(il?) < C,

/p(r,y)22Lp(y‘1)
then T is strong (p,p), 1 < p < g, and weak (1,1).

Very recently, in connection with the study of the Cauchy integral, the
question has arisen of extending the theory of singular integrals to nonhomo-
geneous spaces: topological spaces X with a pseudo-metric p and a measure
1 which is not doubling. F. Nazarov, S. Treil and A. Volberg ( Weak type
estimates and Cotlar inequalities for Calderdon-Zygmund operators on non-
homogeneous spaces, Int. Math. Res. Let. 9 (1998), 463-487) have shown
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that the above result remains true if: p is a metric; there exists a constant
v > 0 such that for all z € X and r > 0, u(B(z,r)) < r¥; and we replace
(5.22) with the assumption that there exists § > 0 such that

o PW:2)°

|K(z,y) - K(z,2)| < W’

if p(z,y) > 2p(y, 2)-
6.5. The size of constants.

In the proof of Theorem 5.1, if we form the Calderén-Zygmund decom-
position at height A=), then the weak (1, 1) constant becomes Cp(A4 + B),
and by interpolation the strong (p, p) constant is dominated by

C!(A+ B)p?
p—1
In general, this is the best possible constant asymptotically as p — 1 or

p — oo. To see this, suppose the kernel K satisfies the gradient condition
with constant C (5.3) and also satisfies

, 1l<p<oo.

Cc
K@ > ol >0

Let B = B(0,1) and let B* = B(0, R), where R is such that C/R < ¢/2.
Fix f = |B|"YPxp; then || f||, = 1. Further, for z ¢ B*,

T(z) > |BI= /7 — | BV /B IK(z — y) — K(2)| dy

clBll_l/” C[Bll“/"‘l/”
> -
z|” |z|n+1
c|B|\ /P
20zr -
It follows from this that for p small, |Tf||, = O((p— 1)~?). If we apply the
same argument to the adjoint operator, then by duality we get that for p
large, ||T'fll, = O(p)-
This proof can easily be adapted to the case when K is the kernel of one
of the Riesz transforms, and a similar argument holds for Calder6n-Zygmund
operators. (See Stein [17, p. 42].)

6.6. More on truncated integrals.

Given a Calderén-Zygmund singular integral T, that is, a Calderén-
Zygmund operator that satisfies (5.17), it is natural to ask when T, f con-
verges to Tf in LP. If 1 < p < oo, this is immediate: if f € LP then by
Theorem 5.14, T* f € LP, so convergence follows from the dominated con-
vergence theorem. This argument fails when p = 1, but nevertheless it can
be shown that if f,Tf € L!, then T.f — Tf in L. This result is due to
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A. Calderén and O. Capri (On the convergence in L1 of singular integrals,
Studia Math. 78 (1984), 321-327).

6.7. Vector-valued singular integrals and maximal functions.

The vector-valued extension of the theory of singular integral operators
in Section 5 has wide application, since many of the operators in harmonic
analysis can be viewed as vector-valued singular integrals. This approach
is due to Rubio de Francia, Ruiz and Torrea (see the reference given in
Section 6.1).

Here we will show that the Hardy-Littlewood maximal function can be
treated as a vector-valued singular integral. We first extend Theorem 5.17 to
include the case when T is a bounded operator from L>(A) to L>°(B). The
proof is essentially the same. Fix f, form the Calderén-Zygmund decompo-
sition of || f||4 at height A, and decompose f as g + b, where ||g(z)[|4 < 2"\
a.e. Then, since T is bounded from L*°(A) to L*°(B), for some constant
ﬁ > 01

{z e R": |Tf(z)|]lg > BA} C {x € R™: |Tb(z)||g > A}
The proof then continues as before.

Now fix a non-negative function ¢ € S such that ¢ > 1 on B(0,1).
Define the maximal operator

My f(x) = sup |¢¢ * f(z)],
>0

where ¢;(z) =t~ "¢(z/t). Since ¢ € S, it suffices to take the supremum over
rational t. By our choice of ¢, M f(x) < My(|f|)(z). (The reverse inequality
was proved in Proposition 2.7.) Thus, to prove norm inequalities for M it
will suffice to prove them for M.

Let A = R and B = ¢*°(Q4), and define the vector-valued function
K(z) = {¢()}tcq, - Then K takes values in £(A4, B) and we can define an
operator T to be convolution with K. Since

ITf(@)llB = My f(z),
it follows that T : L°°(A) — L°°(B) is bounded. Further, since ¢ € S,
Clyl
— ) — < 9
Stl;glqst(m y) ¢t($)l = l$|n+l ) |.’l:l > 2|y| > 01

which implies the Hérmander condition (5.20) for K. Hence, by Theorem
5.17 (as extended above), T : LP(A) — LP(B); equivalently, My is bounded
on L*.

The boundedness of My was originally proved by F. Zo (A note on
approzimation of the identity, Studia Math. 55 (1976), 111-122).
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+.8. Strongly singular integrals.

In Theorem 5.1, given an arbitrary tempered distribution with bounded
Fourier transform, the Hérmander condition (5.2) seems to be the weakest
hypothesis possible to get L? boundedness. It is of interest, however, to
see how this hypothesis can be weakened if stronger conditions are assumed
on the Fourier transform The prototypical operator motivating this is the
convolution operator Top = Kop * f, 0 < a < 1 and b > 0, where

el

Ka,b(&) = d’(E) 'W )

and ¢ is a C* function which vanishes near the origin and is identically
equal to one outside of some compact set. This integral arises in the study
of the LP convergence of multiple Fourier series (cf. Chapter 1, Section 10.2).

Clearly,
- A
Kap(O| < 77—
Kol = Ty
and it can be shown that for z close to the origin,
|Kap(z)| = W’

where § = (na/2—b)/(1—a). Hence, this kernel does not satisfy the gradient
condition (5.3) (It also fails to satisfy the Hormander condition, this fact
follows from the next result.)

However, these two growth conditions are sufficient to determine the
behavior of Ty on LP.
Theorem 5.18. The operator T, p is bounded on LP if
1 1] (b/n)(n/2+6) 5= na/2—b
2 p b+ 6 T '

l1-a
and is unbounded if the reverse inequality holds. If equality holds in (5.23),
then T, p maps LP into the Lorentz space Jrld

(5 23) <

The LP boundedness of T, was first shown by I Hirschmann (On mul-
tiplier transformations, Duke Math. J 25 (1959), 221-242) when n = 1 and
by S Wainger (Special trigonometric series in k dimensions, Mem. Amer.
Math. Soc 59 (1965)) in higher dimensions Also see the survey article
by E. M Stein (Singular integrals, harmonic functions and differentiability
properties of functions of several variables, Singular Integrals, Proc. Sympos.
Pure Math. X, pp 316-335, Amer. Math. Soc., Providence, 1967)

The endpoint inequalities were proved by C Fefferman (Inequalities for
strongly singular convolution operators, Acta Math. 124 (1970), 9-36). He
showed that they are consequences of the following general result, which
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further illustrates the delicate relationship between the conditions on K
and K.

Theorem 5.19. Let K be a tempered distribution on R™ with compact sup-
port which coincides with a locally integrable function away from the origin.
Suppose there exists 6, 0 < 8 < 1, such that

. A
|K(§)] < AT Ep—or

[y K9~ K@ldz< B, <1
z|>2y|"~

Then the operator Tf = K = f is bounded on LP, 1 < p < 00, and satisfies
a weak (1,1) inequality.

£eR?,

This result was later generalized by P. Sjolin (L estimates for strongly
singular convolution operators in R™, Ark. Mat. 14 (1976), 59-64).

6.9. Pseudo-differential operators.

Pseudo-differential operators are generalizations of differential operators
and singular integrals. They are formally defined as in equation (4.17), that
is,

Tf(z) = /Rn oz, €) F(E)m=¢ de,

where o, the symbol of T, is a complex-valued function defined on R™ x R™.
Conditions must be imposed on ¢ to ensure that Tf is well defined for
f € CE(R™).

If o(z,£) = m(€) is independent of , then T is the multiplier associated
with m; if o(z,£) = b(z) is independent of &, T corresponds to pointwise
multiplication by b. Although in these cases T is bounded on L? if and only
if m or b are bounded functions, this is not true in general. For example,
o(x,&) = b(z)m(€) with m,b € L? can be unbounded, but by applying
Holder's inequality it is immediate that T is always bounded on L2.

Symbols are classified according to their size and the size of their deriva-
tives. The simplest classification is motivated by the study of elliptic differ-
ential operators: given m € Z, we say that o € S™ if

|DZDgo(,€)| < Cap(1 + (€)1
Pseudo-differential operators can be rewritten as
(5.24) 710 = | Kle.o= i),

where K is given by (4.19). When ¢ € S° then one can show that K satisfies
a Hérmander condition (cf. (5.10) and (5.11)) and that T is bounded on LZ.
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Hence the theory developed in this chapter applies and T is bounded on L”,
Il <p<oo.

The composition of pseudo-differential operators yields a correspond-
ing symbolic calculus. In the simplest cases (pointwise multiplication and
multipliers) the symbol of the composition of two operators is the product
of the symbols. (Cf. Theorem 4.15.) In general, given pseudo-differential
operators 77 and T2 with symbols in §™! and S™2, their composition is a
pseudo-differential operator with symbol in S™%™2, Further, the symbol
of T1 o T> has an asymptotic expansion whose dominant term is the prod-
uct of the symbols of 77 and 7, and the remaining terms are symbols of
pseudo-differential operators in S™1™m2=J j > (0.

If o € S™ is an elliptic operator (that is, it has a lower bound |o(z, £)| >
C(1+ |£)™), then there exists a symbol in §~™ such that the composition
of the corresponding operators is the identity (which is in S°) plus an error
term with symbol in S~!. Thus, the theory of pseudo-differential operators
with symbols in S™ is readily applicable to the problem of the inversion of
elliptic operators.

When considering the corresponding problem for other differential oper-
ators, a more general class of symbols arises. We say that o € S™ R

IDDgo(z,€)] < Aas(1+ €l AP
This class includes the previous one: with this notation S™ becomes ST,

If T is a pseudo-differential operator with symbol in Shs then it can
again be written in the form (5.24). One can show that the kernel K sat-
isfies the standard estimates (5.12), (5.13) and (5.14) if and only if m =0
and p = § < 1. A remarkable result due to A. P. Calderén and R. Vail-
lancourt (A class of bounded pseudo-differential operators, Proc. Nat. Acad.
Sci. U.S.A. 69 (1972), 1185-1187) gives us that a pseudo-differential opera-
tor with symbol in Sg’p for some 0 < p < 1 is bounded on L?, and so we can
again apply the techniques of this chapter to show that it is bounded on LP.
The proof of Calderén and Vaillancourt uses Cotlar’s lemma (see Chapter 9,
Section 1). Their result is false when p = 1: there exist symbols in S?,l (and
so in L>) whose associated pseudo-differential operators are unbounded on
L2,

When m # 0, the properties of pseudo-differential operators whose sym-
bols are in ST are studied using a scale of spaces which measure the regu-
larity of functxons for example, the Sobolev spaces (see Chapter 4, Section
7.7) or the Lipschitz spaces (see Stein [15, Chapter 5]).

For further results on pseudo-differential operators and additional refer-
ences see Stein [17], Journé [8] and Coifman and Meyer [2].



Chapter 6

H! and BMO

1. The space atomic H'

In Chapter 3, Section 3, we saw that the Hilbert transform of an integrable
function is not, in general, in L!, and that a necessary condition for this is
that the function have zero integral. Here we are going to define a subspace
of L' whose image under any singular integral is in L!. We begin by defining
its basic elements—atoms.

Definition 6.1. An atom is a complex-valued function a defined on R"”
which is supported on a cube @ and is such that

/a(z)d:z:=0 and ||a[|°o§ﬁ.
Q

Proposition 6.2. Let T be an operator as in the hypotheses of Theorem
5.10 whose kernel satisfies condition (5.10). Then there exists a constant C
such that, given any atom a,

| Tally < C.

Proof. Since a € L2, Ta is well defined. Let Q* be the cube with the same
center as @, cg, and side length 21/n times larger. Then, since T is bounded
on L?,

1/2
[ irat@)az <10 ([ 1Ta@) ac)
Q* Q*

115
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< ( |t i) v
<C.

Further, since a has zero average, by condition (5.10)
/ |Ta(z)| dx = / / K(z,y)a(y) dy’ dx
R \Q* R\Q* IVQ

B /n"\cr

< [ fog K@) - KGoscoldzlal dy
<C

dx

]Q K (2,) — K(z, c@)laly) dy

We now define the space atomic H!, denoted by H},, by

HL(R™ = {Z Aja; : aj atoms, Aj € C, Z A < oo} .

j i
Clearly, H], is contained in L. Define a norm on H}, by

11l gz, = inf {Z Al e f = Z)\jaj} :

J

With this norm H}, is a Banach space. (Details are left to the reader.)
Further, it follows immediately from Proposition 6.2 that singular integrals
are bounded from H} to L!.

Corollary 6.3. Let T be an operator as in Proposition 6.2, and let f € HJ,.
Then

TSl < Cllflla,-

The space HY, is the largest subspace of L!(R") for which Corollary 6.3
holds in the following sense: let Ry, ..., Rp be the Riesz transforms in R"
(the Hilbert transform if n = 1), and define the space

H'YR") = {f € L'(R") : R;f € L'(R"),1 < j < n}
with the norm
n
1l = 11l + D IR f
j=1
Then the following is true.
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Theorem 6.4. H*(R™) = H),(R") and their norms are equivalent.

We will not prove Theorem 6.4; a proof can be found in either Garcia-
Cuerva and Rubio de Francia [6, Chapter 3] or Stein [17, Chapter 3].

2. The space BMO

Given a function f € L] (R") and a cube Q, let fo denote the average of f

loc

on Q:
1
Define the sharp maximal function by
1
(6.1) M#f(@) = sup oz [ 1F = fol,
@3z 1Ql Jg

where the supremum is taken over all cubes Q containing z. Each of these
integrals measures the mean oscillation of f on the cube Q; we say that f
has bounded mean oscillation if the function M#f is bounded. The space
of functions with this property is denoted by BMO:

BMO = {f € L}, : M¥f € L*}.
We define a norm on BMO by
£l = 1M f oo

This is not properly a norm since any function which is constant almost
everywhere has zero oscillation. However, these are the only functions with
this property, and it is customary to think of BMO as the quotient of the
above space by the space of constant functions. In other words, two functions
which differ by a constant coincide as functions in BMO. On this space ||- ||«
is a norm and the space is a Banach space.
It is easy to see that we have the pointwise inequality
M#f(z) < CuM f()

with the Hardy-Littlewood maximal function. The constant depends on
the dimension n, but if we replace M by M”, the variant of the maximal

operator where the supremum is taken over all cubes containing x (see (2.6)),
the constant is 2.

Proposition 6.5.
(6.2) L7l < sup inf & / \f(@) - al dz < |fll+
2 T q «C Q| Jg -

(6.3) M*(|f)(z) < 2M* f(2).
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Proof. The second inequality in (6.2) is immediate. To prove the first, note
that for all a,

/Qlf(w)—fqldxs/Qlf(z)—aldw+/ola—fqlda:s2/q|f(w)—aldw-

Now divide both sides by |Q|, take the infimum over all @ and then the
supremum over Q.

Inequality (6.3) follows from (6.2) (with a = |fg]) since

1 1
@—,/an(x)l ~lfolldz < @/sz) ~ ol da.
a

Inequality (6.2) defines a norm equivalent to || - ||, one which provides
a way to show that f € BMO without using its average on Q: it suffices to
find a constant a (that can depend on @) such that

ﬁlllef(w)—aldeO

with C independent of Q.

It follows from (6.3) that if f € BMO then |f] is also in BMO. However,
the converse is not true. This confirms what the definition suggests: being
in BMO is not just a question of size. Clearly L™ C BMO, but there are
also unbounded BM O functions. The typical example on R is

f(z) = {bg (ﬁ) el <1,

0 |z] > 1.
But it is easy to see that the function sgn(z) f(z) ¢ BMO even though f is
its absolute value.

The next result shows the connection between BMO and singular inte-
grals.

Theorem 6.6. Let T be an operator as in the hypotheses of Theorem 5.10
whose kernel satisfies condition (5.11). Then if f is a bounded function of
compact support, Tf € BMO and

151+ < Clifllco-

Proof. Fix a cube Q in R™ with center cg, and let @* be the cube centered
at cg whose side length is 24/n times that of Q. Decompose f as f = fi+ fa,

where f1 = fxo-.



2. The space BMO 119

Let a = T'fo(cg). Then, since (5.11) holds and since T is bounded on

2,
ﬁ / ITf(z) - o] da
<5 / T ()] de

T / ITfo(z) ~ Tfalcg)| da

< (@ / i)l d””) N

1, /Rn\q. (K (2,9) ~ K(cq )} (v) dy| dz

<o(m A @) v

1
i Lo K@) = Kleg wlavas- 11
< Cfle

O

Theorem 6.6 is a first step towards our goal of finding a space which
contains the images of bounded functions under singular integrals. However,
the set of bounded functions with compact support is not dense in L*°, so we
cannot extend T to the whole space by continuity. Instead, we will extend
the definition of T' to one which holds on all of L*°.

Let f be a bounded function and let @ be a cube in R™ centered at the
origin. Define Q* as above and again decompose f as f1 + f2, fi = fxo-.
Since f; is bounded and has compact support, Tf; is well defined as an L?
function; hence T'fi(z) exists for almost every z. For z € Q define

(6.4) Tf(z) = Thi(z) + / K (z,5) — K(0,)] faly) dy

This integral converges since it is bounded by
I7hee [ 1K (@)~ KO dy,
R™\Q"

provided K satisfies (5.11).

Now let Q be some other cube centered at the origin which contains
Q. Then we have two definitions of Tf(z) for z € Q. Let f; = fxg- and
f2 = fXg\@-; then the difference between the two definitions is
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T(h - F)@+ [ K- KOl W)y

R \Q
- [ K - KO ) dy = - / K(0,4)/(v) dy,
Rr\Q* Q*\Q*

and this is independent of . Hence, the two definitions coincide as functions
in BMO since in BMO we identify functions which differ by a constant.
We can, therefore, take (6.4) as the definition of the image of f under 7.
Further, by arguing as we did in Theorem 6.6, we can show that if f € L™
then Tf € BMO. Finally, note that we do not have to take cubes centered
at the origin but can take any cube.

If f is a bounded function of compact support, then (6.4) coincides with
our original definition since for @ large enough, f = f;. More generally, if
f € S then the two definitions agree as BM O functions: since

/ K(0,y)f(y) dy
R™\Q*

converges absolutely to a value independent of x, the two definitions differ
by a constant.

Example 6.7. Let f(z) = sgn(z); we will find the image of f under the
Hilbert transform, whose kernel is K(z,y) = [r(z — y)]~!. Let |z| < a/2;
then

¢ sgn(y) . - N 1 1
7er:c=p.v./ ——=dy+ lim +/ + — ) sgn(y) dy
() - T-Y N—oo J_N a -y Yy ()

= 2log |z| — 2log(a).

Hence, ignoring the constant,
2
H(sgn(z)) = = log|zl.

This is an indirect proof that log|z| is a function in BMO. This result also
agrees with our original motivation for the Hilbert transform since there
exists an analytic function in the upper half-plane whose real part tends to
sgn(z) and whose imaginary part tends to % log |z| as we approach the real
axis. We can give such a function explicitly:

ilog(iz) = ilog(—y + iz) = ilog(z? + y?)/? + arctan(z/y).
As y — 0 the limit of this function is

12{ sgn(z) + ilog |z].
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3. An interpolation result

In applying interpolation theorems (such as the Marcinkiewicz interpolation
theorem) we often use the fact that an operator is bounded from L% to
L. Here we show that we can replace this with the weaker condition of
boundedness from L* to BMO.

Theorem 6.8. Let T be a linear operator which is bounded on LP° for some
po, 1 < po < o0, and is bounded from L to BMO. Then for all p, pp <
p < oo, T is bounded on LP.

The proof of Theorem 6.8 requires two lemmas.

Lemma 6.9. If1 <py<p< oo and f € LP then

(6.5) / Myf(x)Pdz < C / M#* f(z)P de,
R™ Rn

where My is the dyadic mazimal operator (2.9).

By Lemma 2.12 we can replace the dyadic maximal function in (6.5)
with the Hardy-Littlewood maximal function. Thus, while the reverse of
the pointwise inequality M# f(z) < CM f(z) is not true in general, Lemma
6.9 provides a substitute norm inequality.

The proof of Lemma 6.9 uses a technique known as a “good-\ inequal-
ity”; more precisely, it depends on the following result.

Lemma 6.10. If f € LP° for some pp, 1 < pg < o0, then for all v > 0 and
A>0,

[{z € R™ : Myf(x) > 2\, M# f(z) < yA} < 2"y|{z € R™: Myf(z) > A}|.

Proof. Without loss of generality we may assume that f is non-negative.
Fix A,y > 0. If we form the Calderén-Zygmund decomposition of f at
height A, then the set {x € R™ : Myf(z) > A} can be written as the union
of disjoint, maximal dyadic cubes. (See Theorem 2.11; we can substitute
f € L™ for the hypothesis f € L! in the proof.) If Q is one of these cubes,
then it will suffice to show that

(6.6) Hz € Q: Maf(z) > 24, M¥ f(z) < yA}| < 2™|Q).
Let Q be the dyadic cube containing Q whose sides are twice as long.

Then, since @ is maximal, fé < A. Furthermore, if x € Q and My f(x) > 2A,
then My(fxo)(z) > 2, so for those z’s,

Ma((f - f)x@)(®) = Ma(fxQ)(®) ~ f5 > M
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By the weak (1,1) inequality for My (Theorem 2.10),
1
: My((f = f5 A< < —fsld
{z € Q: Ma((f — fa)x)(®) > M < A/Qlf(aw folde

2101 1 4
s G e~ selds

2"Q) . #
X L M7 (@).

IA

If the set {x € Q : Maf(z) > 2\, M# f(z) < v} is empty there is nothing
to prove. Otherwise, for some = € Q, M# f(z) < v\ and so inequality (6.6)
holds. [

Proof of Lemma 6.9. For N > 0 let
Iy = /Np)\”‘ll{x € R™: Myf(z) > A} dA.
Iy is finite since ’
n < 2w [ g e R Mat@) > 2|
and Myf € LP0 since f € LP. Furthermore,

N/2
Iv = 2P/0 pAP1[{z € R : Myf(z) > 20} dA

N/2
< / pAP-1 ('{:c € R™: Myf(z) > 2\, M* f(z) < 42}
0
+|{z e R™: M*f(z) > 7/\}|)d)\

ptn il A e
<2 7IN+;’; pAP T {z € R™ : M7 f(z) > A} dA
0

Fix v such that 2P+"y = 1/2; then

o+l rYN/2 1 " 4
(6.7) Iy < > pAP T {z € R™ : M7 f(z) > A}|dA.
0

If f[(M # f)P = 0o then there is nothing to prove. If it is finite then we can
take the limit as N — oo in inequality (6.7) to get (6.5). O

Proof of Theorem 6.8. The composition M# o T is a sublinear operator.
It is bounded on L since both these operators are, and it is bounded on
L° since

IM#(THlloo = ITSll+ < Cllf oo
Hence, by the Marcinkiewicz interpolation theorem M#* o T is bounded on
L?, pp < p < 0.
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Now suppose that f € LP has compact support. Then f € LP° and so
Tf € LP. Therefore, we can apply Lemma 6.9 to Tf. In particular, since
ITf(2)] < My(Tf)(z) ae.,

/ ITF ()P dz < / My(T () de
R™ Rn
<C / M*(Tf)(z)P dzx
R®

<c /R @) da.

4. The John-Nirenberg inequality

In this section we examine the rate of growth of functions in BMO. We first
consider log(1/|z|), which we gave as an example of an unbounded function
in BMO. On the interval (—a, a), its average is (1 —loga); given A > 1, the
set where

| log(1/}z]) — (1 —loga)| > A

has measure 2ae~*~!. The next result shows that in some sense logarithmic
growth is the maximum possible for BMO functions.

Theorem 6.11 (John-Nirenberg Inequality). Let f € BMO. Then there
exist constants C; and Cs, depending only on the dimension, such that given
any cube @ in R™ and any A > 0,

(6.8) Hz € Q:|f(z) - fo| > A}| < Cre~C2M Il

Ql-

Proof. Since (6.8) is homogeneous, we may assume without loss of gener-
ality that ||f||« = 1. Then

1
(6.9) @ /Q 1£(z) - foldz < 1.

Now form the Calderén-Zygmund decomposition of f — fo on Q at height
2. (This is done as in Theorem 2.11 except that we begin by bisecting the
sides of @ to form 2™ equal cubes and repeating this for all cubes formed.
Inequality (6.9) replaces the hypothesis that f € L!.) This gives us a family
of cubes {Q,,;} such that

1

2< ——
Q1] Jo,,

|f(z) ~ foldz < 2"+
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and |f(z) — fol £ 2 if z ¢ U; Q1. In particular,
1 1
Yol <5 [ 1f@) - folde < 51QI,
— 2/Q 2
and

< 2n+1.

|fQ1.j - le =

LQ+J~I /Q (f() — fg) da

On each cube Q1; form the Calderén-Zygmund decomposition of f —
fq, ; at height 2. (Again by assumption the average of this function on Q,;
is at most 1.) We then obtain a family of cubes {Q; ;} which satisfy the
following:

Ile,].k - le,jl < 2"+1’
f(z) = fou,;1 <2 if z€Qu; \|JQusks
k

1
D 1Quikl < 51Q1l-
k

Gather the cubes Q, ; corresponding to all the @Q; ;’s and collectively
rename them {Q2;}. Then

3 1@ < 21Q
J

a’nd lf.’t ¢U_1 szjv
|f(2) = fal <1f(2) = fau, |+ fa,, — fol <2+ 271 <227+,

Repeat this process indefinitely. Then for each N we get a family of
disjoint cubes {Qn,;} such that

|f(z) - fol < N - 2™
ifz ¢ J;@n,; and

S 1Qwsl < xlal
J

Fix A > 2"*1 and let N be such that N2"t! < A < (N +1)2**1. Then
Hz € Q:1f(x) - fol > A} < D_1Qw,l
]

1
< §W|Q|
— e—Nlog2,Q|

<e Q|
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where Cy = log2/2"+2. If A < 2"*! then C,\ < log v/2. Hence,

Hz € Q:|f(®) - fol > A} < [Q] < P2 V2CR|Q| = V2e~O|Q),
so we can take C; = /2. O
Corollary 6.12. For allp, 1 < p < o0,

1 1/P
1115 = sup (@ /Q (@) - fol? dz)

is a norm on BMO equivalent to || - ||+.

Proof. It will suffice to prove that ||f|l.p < Cp|flls since the reverse in-

equality is immediate. But by Theorem 6.11
{o ]
[5G = saldz= [~ 91z € Q:15() - fal > N an

< C1|Q /oo p/\p—le—czf\/llfll- d.
0

Make the change of variables s = Co\/|| f||+; then we get

IQI/ |f(z) - fQ|”dm<Cp<”f” ) /0 sP7le~S ds

= Clpc2 pr‘(p)”f”n
which yields the desired inequality. 0

As a consequence of the proof of Corollary 6.12 we get two additional
results. Given the size of the constant Cp, if we expand the exponential
function as a power series we immediately get the following.

Corollary 6.13. Given f € BMO, there ezxists A > 0 such that for any

cube Q,
L/ M@ fal gz < oo
Q| Jo

Further, the proof of Corollary 6.12 (with p = 1) can be readily adapted
to show that the converse of the John-Nirenberg inequality (Theorem 6.11)
holds.

Corollary 6.14. Given a function f, suppose there exist constants Cy, Ca
and K such that for any cube Q@ and A > 0,

Hz € Q:1f(x) - fol > A} < Cre” V¥ |qQ).
Then f € BMO.
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5. Notes and further results

5.1. References.

For the development of Hardy spaces and in particular the space H?, see
Section 5.2 below. E. M. Stein (Classes HP, multiplicateurs et fonctions de
Littlewood- Paley, C. R. Acad. Sci. Paris 263 (1966), 716-719, 780-781) first
proved that singular integrals and multipliers are bounded from H?! to L!.
The space BM O was introduced by F. John and L. Nirenberg while studying
PDE’s (On functions of bounded mean oscillation, Comm. Pure Appl. Math.

4 (1961), 415-426). There they proved Theorem 6.11. That singular inte-
grals take L into BM O was first observed by S. Spanne (Sur {’interpolation
entre les espaces KZ’Q, Ann. Scuola Norm. Sup. Pisa 20 (1966), 625-648),
J. Peetre (On convolution operators leaving LP* spaces invariant, Ann. Mat.
Pura Appl. 72 (1966), 295-304), and E. M. Stein (Singular integrals, har-
monic functions, and differentiability properties of functions of several vari-
ables, Singular Integrals, Proc. Sympos. Pure Math. X, pp. 316-335, Amer.
Math. Soc., Providence, 1967). The sharp maximal function was introduced
by C. Fefferman and E. M. Stein (HP spaces of several variables, Acta Math.
129 (1972), 137-193); in the same paper they proved Theorem 6.8.

5.2. The HP spaces.

The Hardy spaces were first studied as part of complex analysis by
G. H. Hardy (The mean value of the modulus of an analytic function, Proc.
London Math. Soc. 14 (1914), 269-277). An analytic function F in the unit
disk D={z€C:|z|] <1} isin HP(D), 0 < p < oo, if

us

sup / |F(re®®)P df < oo.
0<r<1J—m

A function F which is analytic in the upper half-plane Ri ={z=z+iy:

y >0} is in HP(R?) if

sup/ |F(z + iy)|P dz < oco.

When p > 1 it can be shown that HP coincides with the class of analytic
functions whose real parts are the Poisson integrals of functions f in LP(T)
or LP(R), respectively. We can therefore identify HP(D) with LP(T) and
HP(R%) with LP(R). This identification does not hold, however, for p <
1. Functions in HP(D) and HP(R2) have a rich structural theory based
on “factorization” theorems which allow them to be decomposed into well
understood components. For a thorough treatment from this perspective,
see Koosis [11] or Rudin [14].

Unfortunately, these results cannot be extended to higher dimensions
using the theory of functions of several complex variables. E. M. Stein
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and G. Weiss (On the theory of harmonic functions of several variables,
I: The theory of HP spaces, Acta Math. 103 (1960), 25-62, also see Stein
[15, Chapter 7]) defined HP(R™™!) by considering vector-valued functions
which satisfy generalized Cauchy-Riemann equations. This extension is only
valid if p > 1 — 1/n, which does include H!. This space H! is isomorphic
(by passing to boundary values) to the space of functions in L!(R™) whose
Riesz transforms are also in L!(R™). (This is the space we called H!(R") in
Section 1.)

D. Burkholder, R. Gundy and M. Silverstein (A maximal characteriza-
tion of the class HP, Trans. Amer. Math. Soc. 157 (1971), 137-153) proved
a crucial result for establishing a strictly real-variable theory of H? spaces.
Given F = u + iv, analytic in the upper half-plane, they showed that F' is
in HP if and only if the non-tangential maximal function of its real part,

ug (zo0) = sup{|u(z,y)| : (z,y) € Ta(z0)},

where
ra(xO) = {(IE, y) € R—2+- : [IL‘ - IO| < O,’y},

is in LP(R). (See Chapter 2, Section 8.7.) Since u(z,y) = Py * f(z), the
Poisson integral of its boundary value f, this characterizes the restriction
to R of the real parts of functions in HP(R?). This space of functions on
R, which is customarily denoted by HP(R) (or sometimes by Re HP(R)), is
equivalent when p = 1 to the space H!(R) defined in Section 1. The original
proof of this result used Brownian motion; a complex analytic proof was
given by P. Koosis (Sommabilité de la fonction mazimale et appartenance a
Hi, C. R. Acad. Sci. Paris 28 (1978), 1041-1043, also see [11, Chapter 8]).

The key feature of this result is that the fact that u is a harmonic function
is irrelevant, in the sense that the same characterization of the boundary
values holds if we replace the Poisson kernel by any approximation of the
identity defined starting from ¢ € S with non-zero integral. This leads to
an elegant definition of H? in higher dimensions: given ¢ € S(R™) with
non-zero integral, we say a function f € HP(R") if

My f(zo0) = sup{|dy * f(z)| : (z,y) € Ta(xo)}

is in LP(R™). The resulting space is independent of ¢: in fact, one can
replace My by the so-called grand maximal function

Mf(z) = szp My f(z),

where the supremum is taken over all such ¢. For p > 1 — 1/n this space
is isomorphic (again by taking boundary values) to the HP spaces of Stein
and Weiss above. This approach is developed in the excellent article by
Fefferman and Stein cited above. Also see Stein [17, Chapter 3].
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The atomic decomposition of functions in HP(R) is due to R. Coifman
(A real variable characterization of HP, Studia Math. 51 (1974), 269-274); it
was extended to higher dimensions by R. Latter (4 decomposition of H?(R™)
in terms of atoms, Studia Math. 62 (1978), 93-101; also see R. Latter and
A. Uchiyama, The atomic decomposition for parabolic HP spaces, Trans.
Amer. Math. Soc. 253 (1979), 391-398). For simplicity we used an atomic
decomposition as the basis of our definition of H(R™)—the space we called
HXL(R™). Using these methods, R. Coifman and G. Weiss (FEztensions of
Hardy spaces and their use in Analysis, Bull. Amer. Math. Soc. 83 (1977),
569-645) defined HP spaces on spaces of homogeneous type (see Chapter 5,
Section 6.4). Their definition only holds for pg < p < 1, where pg is a
constant which depends on the space being considered.

A monograph on the real theory of HP spaces with applications to
Fourier analysis and approximation theory is due to Shanzhen Lu (Four
Lectures on Real HP Spaces, World Scientific, Singapore, 1995).

Finally, we mention another characterization of H? spaces in terms of
the Lusin area integral. If u is a harmonic function on ]R’_}_*l, let

1/2
S(u)(ao) = ( L. )|Vu|2y1’"dydx) ,
a(Zo

where
% (20) = {(z,y) € R : |z — 70| < ay,0 < y < h}
and
oul> | oul?
2 _ |9 el
vul® = |5 +,-\‘:‘1 5z

(This is called the area integral since if n = 1, S(u)? is the area of the image
of I'*(zy), counting multiplicities, under the analytic function F' whose real
part is u.) Then u € H?(R™*?) if and only if S(u) € LP(R™) and u(z,y) — 0
as y — oo. An alternative characterization is gotten by replacing the area
integral by a Littlewood-Paley type function which is its radial analogue:

9(u)(z) = ( |7 @y dy)w.

This characterization is due to A. P. Calderén (Commutators of singular
integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099). See
also Garcia-Cuerva and Rubio de Francia [6], Stein [15], Zygmund [21] and
the article by Fefferman and Stein cited above.
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5.3. Duality.

The results on boundedness from H! to L! and from L*® to BMO
are dual to one another. This is a consequence of a deep result due to

C. Fefferman (announced in Characterizations of bounded mean oscillation,
Bull. Amer. Math. Soc. 77 (1971), 587-588).

Theorem 6.15. The dual of H!(R™) is BMO.

The article by Fefferman and Stein cited above gives two proofs of this
result. Three appear in Garcia-Cuerva and Rubio de Francia [6].

The duals of the HP spaces, p < 1, are Lipschitz spaces. This is due to
P. Duren, B. Romberg and A. Shields (Linear functionals on HP spaces with
0 <p <1, J. Reine Angew. Math. 238 (1969), 32-60) on the unit circle and
to T. Walsh (The dual of HP(R™*!) for p < 1, Can. J. Math. 25 (1973),
567-577) in R™. Also see [6, Chapter 3].

5.4. The Hardy-Littlewood maximal function on BMO.

The maximal function is bounded on BMO: if f € BMO then M f €
BMO. This was first proved by C. Bennett, R. A. DeVore and R. Sharp-
ley (Weak L and BMO, Ann. of Math. 113 (1981), 601-611); simpler
proofs were given by F. Chiarenza and M. Frasca (Morrey spaces and Hardy-
Littlewood mazimal function, Rend. Mat. Appl., Series 7, 7 (1981), 273-279)
and D. Cruz-Uribe, and C. J. Neugebauer (The structure of the reverse
Hoélder classes, Trans. Amer. Math. Soc. 347 (1995), 2941-2960). See also
a proof in Torchinsky [19, p. 204].

5.5. Another interpolation result.

In applying the Marcinkiewicz interpolation theorem one often uses that
the operator in question is bounded on L or satisfies a weak (1, 1) inequal-
ity. In Theorem 6.8 we showed that we can replace the first hypothesis by
the assumption that the operator maps L™ into BMO. One can also use
H? to replace the weak (1,1) inequality.

Theorem 6.16. Given a sublinear operator T, suppose that T maps H*
into L' and for some p1, 1 < py < oo, T is weak (p1,p1). Then for all p,
1<p<p, T is bounded on LP.

This result can be generalized to the other H? spaces. For details and
references, see Garcia-Cuerva and Rubio de Francia [6, Chapter 3].

5.6. Fractional integrals and Sobolev spaces.

For fractional integral operators I, (see Chapter 4, Section 7.7), the
critical index is p = n/a: we would expect I, to map L™% to L™, but it
does not. Instead, we have a result analogous to Theorem 6.6.
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Theorem 6.17. If f € L'/ then I,f € BMO.

The proot of this theorem follows at once from an inequality rclating the
fractional integral. the sharp maximal function and the fractional maximal
function.

Theorem 6.18. There exist positive constants Cy and Ca such that for all
locally integrable f,

CiM,f(z) < M#(I,f)(z) < CaMof(x).

Both of these results are due to D. R. Adams (A4 note on Riesz potentials,
Duke Math. J. 42 (1975), 765-778).

When p = 1, besides the weak (1,n/(n—a)) incquality in Theorem 4.18,
we also have an analogue of Corollary 6.3: ||Ioflln/(n-a) < Cllflls. This
result is due to Stein and Weiss—see the article cited above. Similar in-
cqualities hold for all the H” spaces: scc the article by S. Krantz ( Fractional
integration on Hardy Spaces, Studia Math. 73 (1982), 87-94).

For Sobolev spaces. the corresponding limiting theorem would be that
if f e LZ/ ¥ then f € BMO. However, this is only known when k = 1: see
the paper by A. Cianchi and L. Pick (Sobolev embeddings into BMO, VMO
and Lo, Ark. Mat. 36 (1998), 317-340). In the gencral case we have as a
substitute an exponential integrability result (c¢f. Corollary 6.13).

Theorem 6.19. Given 0 < a < n and any cube Q, then there exist con-
stants C1 and Cy such that if f € LV*(Q).
pl
< Co.

ﬁém(

Theorem 6.19 was proved by N. S. Trudinger (On imbeddings into Or-
licz spaces and some applications, J. Math. Mech. 17 (1967), 473-483)
when a = 1 and in general by R. S. Strichartz (A note on Trudinger’s
extension of Sobolev’s inequalities, Indiana Univ. Math. J. 21 (1972), 841-
842). Sharp constants have been found by J. Moser (A sharp form of
an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-
1092) and D. R. Adams (A sharp inequality of J. Moser for higher order
derivatives, Ann. of Math. 128 (1988), 385-398). Also see the books by
W. Ziemer (Weakly Differentiable Functions, Springer-Verlag, New York,
1989) and D. R. Adams and L. Hedberg (Function Spaces and Potential
Theory. Springer-Verlag, Berlin, 1996).

Iof
Cill fllprra ()
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5.7. Vanishing mean oscillation.

Given a function f € BMO. we say that f has vanishing mcan oscilla-
tion, and write f € VMO, if

L
@./Q 1f(z) - folda

tends 1o zero as |@| tends to either zero or infinity. As in BMO, there are
unbounded functions in VMO. For example,

flz) = loglog(1/|z]), || < 1/e,
= 0, || > 1/e,

is in VMO, and in fact it can be shown that in some sense it has the
maximum rate of giowth possible for functions in VMO. Clearly, if f € Cy
(i.e. the space of continuous functions which vanish at infinity) then f €
VMO:; further, VMO is the closure in BMO of Cy.

VMO lets us sharpen Theorem 6.6 as follows: given a singular integral
operator T, if f € Cy then Tf € VMO.

The space VMO was introduced by D. Sarason (Functions of vanishing
mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405). Also see
the survey article by R. Coifman and G. Weiss ( Extensions of Hardy spaces
and their uses in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645).

5.8. Commutators and BMO.

We can give another charactcerization of BMO in terms of singular in-
tegrals. Let T be a singular integral, and for a locally integrable function
b, let M, be the operator given by pointwise multiplication by b: M, f(z) =
b(z)f(z). Define the commutator [b, T} by MyT —TM,. If Tf = K « f then
for f € C¥

(b, T]f(2) = /R (b(2) ~ b)) K (z ~y)f(y) dy, z & supp(f).

Clearly, if b € L™ then [b,T] is bounded on L?, 1 < p < co. Since both
M,T and T M, are boundcd exactly when b is a bounded function, it would
be reasonable to conjecture that this is also the case for [b, T']. However, due
to cancellation between the two terms, a weaker condition is sufficient.

Theorem 6.20. Given a singular integral T whose associated kernel is stan-
dard, then the commutator [b, T| is bounded on LP, 1 < p < oo, if and only
ifbe BMO.

Commutators were introduced by R. Coifman, R. Rochberg and G. Weiss
(Factorization theorems for Hardy spaces in several variables, Ann. of Math.
103 (1976), 611-635) who used them to extend the classical theory of H?
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spaces to higher dimensions. They proved that b € BMO is sufficient for
[b, T] to be bounded and proved a partial converse. The full converse is due to
S. Janson (Mean oscillation and commutators of singular integral operators,
Ark. Mat. 16 (1978), 263-270). This paper also contains a simpler proof of
sufficiency due to J. O. Strémberg which is reproduced in Torchinsky [19,
p. 418].

The commutator [b, T} is more singular than the associated singular inte-
gral; in particular, it does not satisfy the corresponding weak (1, 1) estimate.
However, the following weaker result is true.

Theorem 6.21. Given a singular integral T and b € BMO, then
e e R 7@ > A < el [ 2 (1nog (1211 4

Theorem 6.21 is due to C. Pérez (Endpoint estimates for commutators
of singular integral operators, J. Funct. Anal. 128 (1995), 163-185). In this
paper he also discusses the boundedness of [b,T] on H.

A. Uchiyama (On the compactness of operators of Hankel type, T6hoku
Math. J. 30 (1978), 163-171) proved that the commutator [b, T is a compact
operator if and only if b€ VMO.



Chapter 7

Weighted Inequalities

1. The A, condition

In this chapter we are going to find the non-negative, locally integrable
functions w such that the operators we have been studying are bounded on
the spaces LP(w). (These are the LP spaces with Lebesgue measure replaced
by the measure wdz.) We will refer to such functions as weights, and for a
measurable set E we define w(E) = [pw

Our first step is to assume that the Hardy-Littlewood maximal function
satisfies a weighted, weak-type inequality, and deduce from this a necessary
condition on the weight w. To simplify our analysis, throughout this chap-
ter we will replace our earlier definition of the Hardy-Littlewood maximal
function with

1
Mf(z) = SQI;I;@/QIf(y)Idy,

where the supremum is taken over all cubes Q containing z. This is the
non-centered maximal operator we originally denoted by M" (see (2.6)),
but recall that it is pointwise equivalent to our original definition (2.3).

The weighted, weak (p, p) inequality for M with respect to w is
(7.1) w({r e R": Mf(z) > A}) < )‘p/ |f(z)]Pw(z

Let f be a non-negative function and let @ be a cube such that f(Q) =
fo > 0. Fix A such that 0 < XA < f(Q)/|Q|. Then Q@ C {z € R":
M(fxq)(x) > A}, so from (7.1) we get that

<5 [ V@Prue) i

133
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Since this holds for all such A, it follows that

f(Q)
7.2 <C Pw.
& w@ (P2 <c [ 1P
Given a measurable set S C @, let f = xs. Then (7.2) becomes
(7.3) w(Q) <||Q||) < Cw(S).

From (7.3) we can immediately deduce the following:

(1) The weight w is either identically 0 or w > 0 a.e. For if w=0on a
set of positive measure S (which we may assume is bounded), then
(7.3) implies that for every cube @ that contains S, w(Q) =

(2) The weight w is either locally integrable or w = oo a.e. For if
w(Q) = oo for some cube @, then the same is true for any larger
cube, and so by (7.3), w(S) = oo for any set S of positive measure.

Note that while we had assumed a priori that w was locally integrable, this
is actually a consequence of the weighted norm inequality.
To deduce the desired necessary conditions, we will consider two cases.
Case 1: p = 1. In this case inequality (7.3) becomes
w(@) _ jw(S)
el : IS
Let a = inf{w(z) : £ € Q}, where inf is the essential infimum, that is,

excluding sets of measure zero. Then for each ¢ > 0 there exists S¢ C @
such that [S| > 0 and w(z) < a + € for any z € S.. Hence, for all € > 0,

W@ _

Top St
and so
w@) .~
o < C’Inelg w(z).
Therefore, for any cube Q,
(7.4) |(qu2) < Cuw(z) ae z€Q.

This is called the A; condition, and we refer to the weights which satisfy it
as A; weights. Condition (7.4) is equivalent to
(7.5) Muw(z) € Cw(z) ae. z€R™

Clearly, (7.5) implies (7.4). Conversely, suppose that (7.4) holds and let =
be such that Mw(z) > Cw(z). Then there exists a cube @ with rational
vertices such that w(Q)/|Q| > Cw(z), so z lies in a subset of Q of measure
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zero. Taking the union over all such cubes we see that Mw(z) > Cw(z)
holds only on a set of measure 0 in R™.

Case 2: 1 <p<oo.In (7.2)let f= wl“"xq; then

p
1-p/ 1
(Q)<IQ|/ ) <cfv
Equivalently,

() @) s

where C is independent of Q. (Note that to derive (7.6) we have assumed
that w!~? is locally integrable. To avoid this assumption we can replace it
by min(w!~?,n) and take the limit as n tends to infinity. However, since
w > 0 a.e., (7.6) implies that w!~?" is locally integrable.)

Condition (7.6) is called the A, condition, and the weights which satisfy
it are called A, weights.

Theorem 7.1. For 1< p < oo, the weak (p,p) inequality
w{z € R" : Mf(z) > A}) < )\P/ |f (@) ]Pw(z) dx
holds if and only if w € Ap.

Proof. We proved the necessity of the A, condition above.

To prove sufficiency, we first consider the case p = 1. This case is a
corollary to Theorem 2.16. The right-hand side of the weak (1,1) inequality
(2.11) contains Mw, and since w € A;, by (7.5) we can replace Mw by Cw.

Now suppose that p > 1 and w € A,. Given a function f, we first show
that inequality (7.2) holds, and so inequality (7.3) also holds. By Hélder’s
inequality

(IQI/ ) = (g [ seromre) 1
< (@ ) (@ o)
< (g1 f,re) (a)

Now fix f € LP(w); we may assume without loss of generality that f is non-
negative. We may also assume that f € L' since otherwise we can replace f
by fxB(o,x) 2nd the following argument will yield constants independent of k.
(Note that the previous argument shows that f is locally integrable.) Form
the Calderén-Zygmund decomposition of f at height 47"\ to get a collection
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of disjoint cubes {Q;} such that f(Q;) > 47 "\|Q;|. (See Theorem 2.11.)
Then by the same argument as in the proof of Lemma 2.12, we can show
that

{z e R™: Mf(z) > A} c | J3Q;.
J

(Here we dilate the cubes by a factor of 3 instead of 2 because M is the
non-centered maximal operator.)

Therefore,

w{z €R*: Mf(z) > ) < 3 w(3Q;)
J

<o Y w(@y)
J
n; ‘QJI P
<C3 PXj: (_f(Q,-)) o |fPw

n\P
<oz (%) / 1 Pw,
Rn

where the second inequality follows from (7.3), the third from (7.2) and the
fourth from the properties of the Q;’s. a

The following properties of A, weights are consequences of the definition.

Proposition 7.2.
(1) ApCc A, 1<p<aq.
(2) w € Ay if and only if w7 € Ay.
(3) If wo,w; € A, then wowl P € A,.

Proof. (1) If p=1 then

(i) <y = (ago) "< (50)

If p > 1 then this follows immediately from Holder’s inequality.
(2) The Ay condition for w7 is

1 l—p’) (_1__ (l—za’)(l-p))lpl-l <C
(IQI /Q"’ |QI/Q =

and since (p' — 1)(p — 1) = 1, the left-hand side is the A, condition raised
to the power p' — 1.
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(3) We need to prove that

L 1-p _1_ 1-p p'—1
@1 (|Q|/Q’”°“" )(IQI/Q“’" “") <G

By the A; condition, for z € Q and i = 0,1,
w;(z) ! < supwy(x) ! = (inf w-(z)>_l <C (M> -
) T zeQ ) z€Q - QI ’

If we substitute this into the left-hand side of (7.7) for the negative exponents
we get the desired inequality. O

2. Strong-type inequalities with weights

Using the Marcinkiewicz interpolation theorem, we can immediately derive
a strong (p,p) inequality from Theorem 7.1. Let w € Aq, 1 < g < p. Then
L*°(w) = L™ with equality of norms since by (7.3), w(E) = 0 if and only if
|E} = 0. Therefore, we have the inequality

1M fll Loy < 1l (aw)-

If we interpolate between this and the weak (g, ¢) inequality we get

(7.8) /Rﬂ MfPw<C, /Rﬂ \fPw

for all p > gq.
A much deeper result is that this inequality remains true when p = q.

Theorem 7.3. If1 < p < oo then M is bounded on LP(w) if and only if
w € Ap.

Since the strong (p, p) inequality implies the weak (p, p) inequality, ne-
cessity follows from Theorem 7.1. Sufficiency would follow from the above
interpolation argument if we could show that given w € A, there exists g,
1 < g < p, such that w € A,. The existence of such a ¢ comes from the
following key result.

Theorem 7.4 (Reverse Holder Inequality). Let w € Ap, 1 < p < 0o. Then
there ezist constants C and € > 0, depending only on p and the Ap constant
of w, such that for any cube Q,

L e 1/(1+¢€) 2
(79) (IQI f, ) <10 /Q“"

The name of Theorem 7.4 comes from the fact that the reverse of in-
equality (7.9) is an immediate consequence of Holder’s inequality.

To prove this result we first need to prove a lemma.
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Lemma 7.5. Let w € A, 1 <p < co. Then for every a, 0 < a < 1, there
exists B, 0 < B < 1, such that given a cube Q and S C Q with |S| < a|Q|,
w(S) < pw(Q)-
Proof. If we replace S by Q \ S in inequality (7.3) we get
SI\?

w(@ (1 51) < Cw@ - wis).
If |S] < a|Q)| then
C-(1-a)P
gw(Q),
which gives us the desired result with 3 =1—C~1(1 — a)P. a

Proof of Theorem 7.4. Fix a cube @ and form Calderén-Zygmund de-
compositions of w with respect to @ at heights given by the increasing
sequence w(Q)/|Q] = Mo < A1 < -+ < Ag < ---; we will fix the A\g’s below.
(The decomposition is formed by repeatedly bisecting the sides of Q; cf. the
proof of Theorem 6.11.)

For each A we get a family of disjoint cubes {Qx ;} such that
w(z) < A if « &% =|JQuk;
J

A w < 2")\k.

k< T
IQ’GJI Qk.j

It is clear from their construction that Qgi; C Q. If we fix Qg j, from
the Calderén-Zygmund decomposition at height Ag, then Q j, N k41 is the
union of cubes Q41 from the decomposition at height Agy;. Therefore,

1Qkjo N urr] = 1Qkt1sl

w3
< — w
Ak+1 z,: Qk+1,2

1
< — w
ki1 JQu
2™ Ak
< /\_—le,.‘iol'
k+1

Fix a < 1 and choose the A¢’s so that 2"A\g/Aey1 = o; that is, Ay =
(2"a1)*w(Q)/|Q|. Then

1Qk,jo N er1] < | Qk,jol,
so by Lemma 7.5 there exists 3 < 1 such that

W(Qk,jo N U41) < Bw(Qk jo)-
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Now sum over all the cubes in the decomposition at height A\t; we
then get w(Qk41) < Pw(Qg). If we iterate this inequality we get w() <
B*w(Qp). Similarly, || < a¥|Q]; hence,

Qﬂk = lim [ =0.
Therefore,
1+e L - 1+e
|Q|/ |Q| o lekz%/nk\nk“w
G gy e
/\0 I(QI) |Q| Z 211 —1)(k+1 e/\eﬂk (QO)

Fix € > 0 such that (27a~1)¢8 < 1; then the series converges and the last
term is bounded by CA§w(Q)/|Q|. Since Ay = w(Q)/|Q| we have shown the
desired inequality. a

As a corollary to the reverse Holder inequality we get the property of
A, weights needed to complete the proof of Theorem 7.3.

Corollary 7.6.
(1) Ap =UgepAgy 1 <p <o0.
(2) If w e Ap, 1 < p < oo, then there exists € > 0 such that w!*t€ € A,.

(3) If we Ap, 1 < p < o0, then there exists § > 0 such that given a cube
Qand SCQ,

é
(7.10) s <c(iE).

If a weight w satisfies (7.10) then we say that w € As. We use this
notation since then (1) holds with p = co. See Section 5.3 below.

Proof. (1) If w € A, then by Proposition 7.2, w'™? € Ap. Therefore, it
also satisfies the reverse Holder inequality for some € > 0:

1/(1+¢€)
O AN e P =
IRl Jo Rl Jq

Fix ¢ such that (¢' — 1) = (p' — 1)(1 + €); then g < p and inequality (7.11)
together with the A, condition implies that w € A,.
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(2) If p > 1 then this follows immediately if we choose ¢ > 0 small
enough so that both w and w!~*' satisfy the reverse Holder inequality with
exponent 1+ ¢. If p =1 then for any cube @ and almost every z € Q,

10l / (IQI / )m < Cula)™™.

(3) Fix S C @ and suppose w satisfies the reverse Holder inequality with
exponent 1+ e. Then

1/(1+¢) €/(1+¢)
- 1+e €/(1+€) ISI>
= s () ons < cwo ()

This gives (7.10) with § = ¢/(1 + ¢). O

3. A; weights and an extrapolation theorem

In this section we first give a constructive characterization of A; using the
Hardy-Littlewood maximal function. This, combined with Proposition 7.2,
lets us construct Ap weights for all p. We will then use this construction to
prove a powerful extrapolation theorem: if an operator is bounded on L (w)
for a fixed index r and all weights w in A, then for any p the operator is
bounded on LP(w), w € Ap.

Theorem 7.7.

(1) Let f € L} (R™) be such that M f(z) < co a.e. If0 <8 <1, then
( ) = M f(z)? is an A weight whose A1 constant depends only on

(2) Com;ersely, if w € A; then there exist f € LIOC(R”), 6§<1,and K
with K, K1 € L™, such that w(z) = K(z)M f(z)°.

Proof. (1) It will suffice to show that there exists a constant C such that
for every f, every cube @ and almost every = € @,

1 5 s
o /Q (Mf) < CMF(z)’.

Fix @ and decompose f as f = fi + fa, where f1 = fx2g. Then M f(z) <
Mfi(z)+ Mfa(z), and so for 0 <6 < 1,

Mf(z)’ < Mfi(z)® + Mfa(x)°.
Since M is weak (1,1), by Kolmogorov’s inequality (Lemma 5.16)

)
6 1-6 nd )
o / (Mf)Y < |le uflnl_ca(IQl / f) < 280 M f ().
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To estimate M fo, note that if y € @ and R is a cube such that y € R
and [p|f2| > 0, then we must have that [(R) > 31(Q), where I(-) denotes
the side length of a cube. Hence, there exists a constant ¢,, depending only
on n, such that if x € @ then = € ¢, R. Therefore,

1 cn n
i /R 1l < T / il < aMi),

and so M fy(y) < "M f(x) for any y € Q. Thus
1
o [ MAa) dy < sy
1Ql Jo
(2) If w € A; then by the reverse Holder inequality there exists € > 0

such that
1/(1+€)
()™ <G e
Q! Jo IQl Jg

This, together with the A; condition, implies that
M) (z)/(+) < Cw(z) ae z€R™
By the Lebesgue differentiation theorem (Corollary 2.13), the reverse in-

equality holds with constant 1, so if we let f = w!*¢ and § = 1/(1 + €) we
get

w(z) < Mf(z)® < Cw(z).
The desired equality now follows if we let K (z) = w(z)/M f(z)°. ]

In part (1) of Theorem 7.7 we can replace f € L _(R™) by a finite Borel
measure p such that Mu(z) < oo a.e. since the weak (1,1) inequality also
holds for such measures. (This is readily shown using the covering lemmas
described in Chapter 2, Section 8.6.) In particular, if § is the Dirac measure
at the origin then M§(z) = C|z|™™. Thus |z|* € A1 if —n < @ <0, and by
Proposition 7.2, |z|* € Ap if —n < @ < n(p — 1). This range is sharp since
outside of it, |z|* and |z|*@~P) are not both locally integrable.

Using Theorem 7.7 we can now prove our extrapolation theorem.

Theorem 7.8. Fizr, 1 <r < o0o. If T is a bounded operator on L (w) for
any w € A, with operator norm depending only on the A, constant of w,
then T is bounded on LP(w), 1 < p < 00, for any w € Ap.

Proof. We first show that if 1 < ¢ < r and w € A; then T is bounded
on LI(w). By Theorem 7.7 the function (Mf)=9/("=1) is in A; since
r—q < r—1, and by Proposition 7.2, w(M f)9~" is an A, weight. Therefore,

[ it = [ iy g gy
R™ R™
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< ([ mwarwoens) " ([ oapp)
<o [urwonne)" ([ 1sm) "

<c / \flow;
]Rn

the second inequality holds by our hypothesis on T and by Theorem 7.3
(since by Proposition 7.2, w € Ay), and the third inequality holds since
|[f(z)]| < Mf(z) ae. and g —7 < 0, s0 Mf(z)?" < |f(2)|97" ae.

We will now show that given any p, 1 < p < 00, and ¢, 1 < ¢ < min(p,r),
T is bounded on LP(w) if w € Ap/,. The desired result follows at once from
this: given w € Ay, by Corollary 7.6 there exists ¢ > 1 such that w € A/,
and so T is bounded on LP(w).

Fix w € A,,,. Then by duality there exists u € L(*/9)'(w) with norm 1

such that
q/p
([mrsew)™ = [ s
]Rn ]Rn

For any s > 1, wu < M((wu)®*)Y/* and M((wu)®)'/* € A;. Therefore, by
the first part of the proof,

/ IT f|*wu < / T f19M ((wu)*)*/*
R Rn
<C / |£12M ((wu)*)/*
Rn

p/q:

=C/ |f|qw‘7/”M((wu)‘)1/3w_"/”
R

a/p , N\ Ve/e)y
<C (/ lf|”w> (/ M ((wu)®)#/9) [sy1=#/9) ) .
R® R"

Since w € Ap/,, by Proposition 7.2, w'~®/9" € A,/ Therefore, if we
take s sufficiently close to 1, w!~®/9)" ¢ A(p/qy/s- Hence, by Theorem 7.3
the second integral is bounded by

C/ (wu) @/ =" = ¢,
R"
This completes the proof. d

A similar argument yields the following variation: given s > 1, if T is
bounded on L"(w) for all w € A,/,, then for p > s it is bounded on LP(w)

for all w € Ap/s.
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4. Weighted inequalities for singular integrals

In this section we prove weighted norm inequalities for Calderén-Zygmund
operators. Recall (see Definition 5.11) that a Calderén-Zygmund operator
is an operator which is bounded on L?, and for f € S can be represented by

f@) = [ K@@ o¢sm),

where K is a standard kernel (i.e. one which satisfies (5.12), (5.13) and
(5.14)).

We begin with two lemmas.

Lemma 7.9. If T is a Calderdn-Zygmund operator, then for each s > 1,
M#(Tf)(z) < CsM(If1°)(2)'",
where M# is the sharp mazimal operator (6.1).

Proof. Fix s > 1. Given z and a cube @ containing it, by Proposition 6.5
it will suffice to find a constant a such that

ﬁ /Q IT(y) - al dy < CM(If1%)(@)".

As in the proof of Theorem 7.7, decompose f as f = f1 + fa, where f; =
Fx20. Now let @ = T fo(z); then

1
1) /Q T () - al dy

1 / 1
<o [Tl + 5 [ [Th20) - T dy
1] QI 1(v)] 1] QI (v) (@)l
Since s > 1, T is bounded on L*(R™). Therefore,

3 / ITfi(w)ldy < (IQI / lel(dey)l/s

<C (@ /20 If(y)lsdy) v

< 22 OM(|f7) () V".

We estimate the second half of the right-hand side of (7.12) using (5.14);
as before [(Q) denotes the side length of Q.

ﬁ /Q T aly) - Tha(z)| dy

K(y,z) — K(z,2)|f(z)dz|d

R"\2Q
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IQI / /"\2Q lx — z|n+5|f(z)|d2dy

f(z
[QI / o /2kl(Q)<|x 2|<2*+11(Q) le—(zf)"l” dz dy
<ouQr 3 T |, F()] dz
o [z—2]<2k+11(Q)
<CMf(z)

< CM(|f)(2)"/°.

Lemma 7.10. Let w € Ap, 1 < po < p < oo. If f is such that Myf €
LPo(w), then

/ \MffPw < C / M# fPw,
Rn R»

where My is the dyadic mazimal operator (2.9) and M# is the sharp mazimal
operator (6.1), whenever the left-hand side is finite.

Proof. This is a weighted version of Lemma 6.9, and the proof is almost
exactly the same. It will suffice to prove a good-A inequality which is a
weighted analogue of Lemma 6.10: for some 6 > 0,

w({z € R™ : Maf(z) > 22, M#f(z) < vA})
< CyYw({z € R™ : Myf(z) > A}).

Since {z € R™ : Myf(z) > A} can be decomposed into disjoint dyadic cubes,
it is enough to show that for each such cube Q,

w({z € Q : Maf(z) > 24, M* f(z) < YA}) < CY*w(Q).
However, this is an immediate consequence of inequality (6.6) (the same

inequality with Lebesgue measure and with C+y on the right-hand side) and
the A condition (7.10). O

Theorem 7.11. If T is a Calderén-Zygmund operator, then for any w €
Ap, 1 <p<oo, T is bounded on LP(w).

Proof. Fix w € A,. We may assume that f is a bounded function of
compact support since the set of such functions is dense in LP(w). By
Corollary 7.6, we can find s > 1 such that w € Ap/,. Therefore, since
Tf(z) < My(Tf)(x) a-e., by Lemmas 7.9 and 7.10,

Liripes [ Maripe
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<c [ MHrspu
R™
<c /Rn M(fIF)Pw

<C [ |fffw,
R"

provided the second integral is finite. To show this it will suffice to show
that Tf € LP(w). If the support of f is contained in B(0, R), then for € > 0

[ miered
|z|<2R

1/(1+¢) e/(1+¢€)
< / w(z) dx / T f () PO+9/ dg .
|z|]<2R |z}<2R

By the reverse Holder inequality we can choose € such that the first integral
is finite; the second is finite since Tf € L9, 1 < q < oo.

To complete our estimate, note that for |z| > 2R,

S@L g e
T = K d C d .
ri@i=|[ SwKEna|sc [ Uca < SN
Therefore,
u(2)
B

[o o)
Tf(z)Pw(z)dz < C /
/|a:|>2R| f@)fulz) kzz:l 2k Re<|z|<2*+1R |T
oo
< CY (2*R)™w(B(0,2**'R)).
k=1
Since w € Ap, by Corollary 7.6 there exists ¢ < p such that w € A;. Then
by (7.3), which holds for balls as well as for cubes,
w(B(0,25*1R)) < C(n, R, w)2k™.

If we substitute this into the above expression we get a convergent series.
Hence, T f € LP(w) and our proof is complete. O

Theorem 7.12. Let T be a Calderén-Zygmund operator and let w € A;.
Then

wifz R (1@ > < § [ if

Proof. The proof is very similar to the proof of Theorem 5.1, the cor-
responding result without weights, and we use the same notation. Form
the Calderén-Zygmund decomposition of f at height A and decompose f
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f = g+b. It will suffice to estimate w({z € R" : |Tg(z)| > A}) and
w({z € R™ : |Tb(z)| > A}). To estimate the first, note that by Proposition
7.2, w € Ay. Hence, by Theorem 7.11

w({z € R": [To(a)| > \)) < @ / Tow

To complete this estimate we must show that [ |glw < C [|flw. On the
set R™\ U, Qj, 9 = f; on each @, since w € A,

/QJ ot < / o [ )l dyu(z) dz

IQ |
<C /Q f(y)w(y)dy

For our second estimate, by (7.3) we have that
. w(Q
w(Ua;) < Ywi@) <o u@) sc L i,
J
By our choice of the Q;’s,

1
@il<y [,

so by the same argument as above we can bound this sum.
Now let ¢; be the center of @;. Then, since b; has zero average on Q;,

w({z ER" \L]JQ;- 2 |Th(z)| > A})
< %Z / gy Tt e

c
R ; /R"\Q;

By inequality (5.13), the last term is bounded by

c ly -l
(7.13) 3 Xj:/Qj 165 () (/Rn\Q' mw(w) dx) dy

w(z) dz.

Q.[K(w,y) — K (z,c;)]bj(y) dy
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Arguing as in the proof of Lemma 7.9, we see that the term in parentheses
is bounded by CMw(y); since w € Aj, this in turn is bounded by Cw(y).
Hence, (7.13) is bounded by

C o C
LS [ ansiwss [ i

where the last inequality follows from our previous argument. O

Finally, recall that T is a Calderén-Zygmund singular integral if it is a
Calderén-Zygmund operator such that

(7.14) Tj(z) = lim T.f(z),
where

nﬂn=/ | KEiG)
z—y|>€

(See Chapter 5, Section 4.) To determine when the limit (7.14) exists almost
everywhere for f € LP(w), we need to consider weighted norm inequalities
for the associated maximal operator,

T*f(z) = sup|Tc f(z)|.
>0

Corollary 7.13. If T is a Calderdn-Zygmund operator, then for 1 < p <
0o, T* is bounded on LP(w) if w € Ap, and T* is weak (1,1) with respect to
wifw€ A

Proof. Corollary 7.13 is a weighted version of Theorem 5.14 and its proof
depends on Cotlar’s inequality (5.18): for 0 < v <1,

T f(2) < C, (MTF) @)Y + Mf()).

When 1 < p < oo the desired result follows at once from Theorems 7.3 and
7.11. When p = 1 the proof proceeds as in the proof of Theorem 5.14, given
the following: Kolmogorov’s inequality (Lemma 5.16)is true when Lebesgue
measure is replaced by any positive Borel measure; Lemma 2.12 is true with
Lebesgue measure replaced by wdz, when w € Ay; and M is weak (1,1)
with respect to w (by Theorem 7.1). O

5. Notes and further results

5.1. References.

The A, condition first appeared, in a somewhat different form, in a pa-
per by M. Rosenblum (Summability of Fourier series in LP(u), Trans. Amer.
Math. Soc. 105 (1962), 32-42). The characterization of A, when n =1 is
due to B. Muckenhoupt ( Weighted norm inequalities for the Hardy mazimal
function, Trans. Amer. Math. Soc. 165 (1972), 207-226). B. Muckenhoupt,
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R. Hunt and R. Wheeden (Weighted norm inequalities for the conjugate
function and the Hilbert transform, Trans. Amer. Math. Soc. 176 (1973),
227-251) proved that w € Ap, is necessary and sufficient for the Hilbert trans-
form to be bounded on LP(w). For p = 2 there is a different characterization
due to H. Helson and G. Szegd. (See Section 5.2 for more details.) R. Coif-
man and C. Fefferman ( Weighted norm inequalities for mazimal functions
and singular integrals, Studia Math. 51 (1974), 241-250) extended these re-
sults to higher dimensions. (See Section 5.7 for more details.) Our proof is
due to Journé [8]. In the same paper, Coifman and Fefferman also proved
that A, weights satisfy the crucial reverse Holder inequality. This inequality
first appeared in a paper by F. W. Gehring ( The LP-integrability of the par-
tial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 3-4,
265-277). The strong (p, p) norm inequality for the maximal function can be
proved without the reverse Holder inequality: see the paper by M. Christ and
R. Fefferman (A note on weighted norm inequalities for the Hardy- Littlewood
mazimal operator, Proc. Amer. Math. Soc. 87 (1983), 447-448). Also see
Section 5.9 below. The characterization of A; weights in Theorem 7.7 is due
to R. Coifman and R. Rochberg (Another characterization of BMO, Proc.
Amer. Math. Soc. 79 (1980), 249-254). The extrapolation theorem is due
to J. L. Rubio de Francia (Factorization theory and A, weights, Amer. J.
Math. 106 (1984), 533-547), who proved it using the connection between
weighted norm inequalities and vector-valued inequalities; J. Garcia-Cuerva
(An extrapolation theorem in the theory of Ap-weights, Proc. Amer. Math.
Soc. 87 (1983), 422-426) gave a direct proof without using vector-valued in-
equalities; our proof is simpler and seems to be new, at least in organization,
although it follows the standard approach. The book by Garcia-Cuerva and
Rubio de Francia [6] contains an excellent exposition of the results related
to weighted norm inequalities. See also the survey articles by B. Mucken-
houpt (Weighted norm inequalities for classical operators, Harmonic Anal-
ysis in Euclidean Spaces, G. Weiss and S. Wainger, eds., vol. 1, pp. 69-84,
Proc. Sympos. Pure Math. 35, Amer. Math. Soc., Providence, 1979) and
E. M. Dynkin and B. P. Osilenker ( Weighted estimates for singular integrals
and their applications, J. Soviet Math. 30 (1985), 2094-2154; translated
from Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Moscow, 1983).

5.2. The Helson-Szegd condition.

The first result characterizing weights for the Hilbert transform is due to
H. Helson and G. Szego (A problem in prediction theory, Ann. Math. Pura
Appl. 51 (1960), 107-138): the Hilbert transform is bounded on L?(w) if
and only if logw = u + Hv, where u,v € L* and ||v||cc < m/2. Their
proof uses complex analysis; while it is straightforward to prove that their
condition implies the A, condition, no direct proof of the converse is known.
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The best that can be shown is that the above decomposition holds with
|lvlloo < 7. This was first shown by R. Coifman, P. Jones and J. L. Rubio
de Francia (Constructive decomposition of BMO functions and factoriza-
tion of Ap weights, Proc. Amer. Math. Soc. 87 (1983), 675-676). A higher
dimensional analogue of this result was proved by J. Garnett and P. Jones
(The distance in BMO to L*, Ann. of Math. 108 (1978), 373-393).

The Helson-Szegd theorem condition has been generalized to LP{w) by
M. Cotlar and C. Sadosky (On some LP versions of the Helson-Szegé the-
orem, Conference on Harmonic Analysis in Honor of Antoni Zygmund,
W. Beckner et al., eds., vol. 1, pp. 306-317, Wadsworth, Belmont, 1983).

5.3. The A, condition.

As we already remarked, inequality (7.10) is called the Ao, condition
since

A= 4
p<oo

This was proved independently by B. Muckenhoupt (The equivalence of two
conditions for weight functions, Studia Math. 49 (1974), 101-106) and by
Coifman and Fefferman in the article cited above. We have already shown
that A, C Aw, so to prove this it will suffice to show that if w € A, there
exists p such that w € 4,. The key step in the proof is to show that w™!
satisfies a reverse Holder inequality with Lebesgue measure replaced by the
measure w dz; that is, there exist positive constants € and C such that for
every cube @

(7.15) (%Q)/Qw_l_‘wy/(l%) < %/Qw'lw.

This is equivalent to
1 / - (IQI )‘
i ‘<O —— ,
RlJeY =7 \w@

which is the A, condition with e =p’ — 1.

The proof of (7.15) is similar to the proof of Theorem 7.4. Starting
from the A condition we can prove a result analogous to Lemma 7.5 but
interchanging the measures: there exist o’ < 1, 8’ < 1 such that if S C Q
and w(S) < o/w(Q) then |S| < §/|Q|. (Note that in the proof of Theorem
7.4 we did not use the full strength of Lemma 7.5 but only the existence of
some a and 3.)

To complete the proof, we use the fact that if w € Ay then w is a
doubling measure: there exists C > 0 such that for any cube Q, w(2Q) <
Cw(Q). This property is sufficient to let us form the Calderén-Zygmund
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decomposition of a function f at height A with respect to the measure w dz.
This yields a collection of disjoint cubes such that

flz) <X wae. z gUQ,-,
J

1
A< ————=
w(@5) Jo,
The proof is essentially the same as the proof for Lebesgue measure (see

Theorem 2.11). With this, we can complete the proof of (7.15) as in the
proof of Theorem 7.4 by forming Calderén-Zygmund decompositions of w1,

fw<CA

If w € Ay then by the above argument and by Proposition 7.2 there
exists p > 1 such that for any ¢ > p, w satisfies the Ay condition with
uniform constant. Therefore, if we take the limit as ¢ tends to infinity we
get

(7.16) (ﬁll./Qw) < Cexp (ﬁélogw).

(Inequality (7.16) is called the reverse Jensen inequality.) Conversely, if w
satisfies (7.16) for all cubes @, then w € Aso. This was proved independently
by Garcia-Cuerva and Rubio de Francia [6, p. 405] and S. V. Hruséev (A
description of weights satisfying the Ay, condition of Muckenhoupt, Proc.
Amer. Math. Soc. 90 (1984), 253-257).

5.4. The necessity of the A, condition for singular integrals.

The A, condition is necessary and sufficient for the Hardy-Littlewood
maximal function to be bounded on LP(w), 1 < p < oo, and to be weak
(1,1) with respect to w, but we only showed that it is a sufficient condition
for Calderén-Zygmund operators. The A, condition is also necessary in the
following sense: if w is a weight on R™ such that each of the Riesz transforms
is weak (p,p) with respect to w, 1 < p < oo, then w € Ap. In particular,
the Hilbert transform is weak (p,p) with respect to w if and only if w € A,.
This is proved for the Hilbert transform in the article by Hunt, Muckenhoupt
and Wheeden cited above, and their argument can be adapted to the case
of Riesz transforms in R™. Further, Stein [17, p. 210] has shown that if any
of the Riesz transforms is bounded on LP(w), 1 < p < 0o, then w € A,,.

5.5. Factorization of A, weights.

Proposition 7.2, part (3), lets us construct A, weights from A4; weights.
It is a very deep fact that the converse is also true, so that w € Ay if
and only if w = wow}_p , where wg, w; € A;. This is referred to as the
factorization theorem and was first conjectured by Muckenhoupt. It was
proved by P. Jones (Factorization of Ap weights, Ann. of Math. 111 (1980),
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511-530). A very simple proof was later given by R. Coifman, P. Jones and
J. L. Rubio de Francia: see the article cited above or Stein [17, Chapter 5].
J. L. Rubio de Francia (in the paper cited above) studied factorization in
a much more general setting and was able to prove a general factorization
principle relating the factorization of operators with weighted inequalities.
(Also see [6, Chapter 6].) The factorization theorem can be generalized to
include information about the size of the exponent in the reverse Holder
inequality. See the paper by D. Cruz-Uribe and C. J. Neugebauer (The
structure of the reverse Holder classes, Trans. Amer. Math. Soc. 347 (1995),
2941-2960).

5.6. A, weights and BMO.

Let f be a locally integrable function such that exp(f) € A2. Given a
cube Q, let fo be the average of f on Q. Then the Ay condition implies

that
(IQI / () (IQI/ (=) <€
equivalently,

(@ oo - 0) (1 fyootra-) <

By Jensen’s inequality, each factor is at least 1 and at most C. Therefore,
this inequality implies that

ﬁ /Q exp(lf — fol) < 2C,

and so

1
@/QIf—fQIQC

Hence, f € BMO. We have proved that if exp(f) € Az then f € BMO;
equivalently, if w € Az, logw € BMO.

From the John-Nirenberg inequality one can prove that if f € BMO
then for all A > 0 sufficiently small, exp(Af) € Az. (Cf. Corollary 6.13.) In
other words,

BMO = {Alogw : A € R, w € A5}

In fact, by Proposition 7.2 it follows that one can take A,, 1 < p < oo, in
place of A,.
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5.7. The Coifman-Fefferman inequality.

The original proof of Theorem 7.11 by Coifman and Fefferman (see the
reference given above) depended on the following inequality, which they
proved for singular integrals T" which satisfy the gradient condition (5.3): if
w € Ay then for 0 < p < oo,

(7.17) [ msrusc, [ oo

(T* is the maximal operator associated with T.) The heart of the proof is
a good-A inequality relating M and T*: there exists § > 0 such that for all
7>0,

w({z € R*: [T"f(z)| > 24, Mf(z) < 4A})
< Oy'w({z € R™: [T*f(z)| > A}).

R. Bagby and D. Kurtz (A rearranged good A inequality, Trans. Amer.
Math. Soc. 293 (1986), 71-81) gave another proof of (7.17) with an asymp-
totically sharp constant; they did so by replacing the good-\ inequality with
a rearrangement inequality:

(T" £)w(t) S CM )L (8/2) + (T£)u(2t),
where (g);, denotes the decreasing rearrangement of g with respect to the
measure wdz. (Cf. Chapter 2, Section 8.2.) J. Alvarez and C. Pérez (Esti-
mates with Ax, weights for various singular integral operators, Boll. Unione
Mat. Ital. (7) 8-A (1994), 123-133) extended inequality (7.17) to Calderén-
Zygmund operators, but with T* replaced by T on the left-hand side. They
did this by proving a sharper form of Lemma 7.9: for 0 < § < 1,

M*(T§%)(@)'/® < CsM f ().
Inequality (7.17) then follows from Lemma 7.10.

5.8. The strong maximal function.

In Chapter 2, Section 8.8, we introduced the strong maximal operator
M; as the average of a function over rectangles with sides parallel to the
coordinate axes. This operator satisfies weighted norm inequalities with
weights analogous to A, weights. The “strong” Ap condition is the following:
w € A;, 1 < p < oo, if for any rectangle R with sides parallel to the

coordinate axes,
ale) Gle)
— [ w — [ w <C.
(|R| R |R| Jr

Theorem 7.14. For 1 < p < 00, M; is bounded on LP(w) if and only if
wE Aj.
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Theorem 7.14 is a consequence of the corresponding result for the Hardy-
Littlewood maximal function. For 1 < i < n, define M; to be the maximal
operator restricted to the i-th variable:

Mif(xly .. )xn) = Mf(zly e 3 Ti—1, 5 T4,y - - ,zn)(xi)'
Then by Fubini’s theorem, M;f(x) < (Mjo - -0 M,)f(z). By a limiting
argument, if w € A;, then for each i, w(z1,...,Zi-1,", Ti+1,. .. ,Tn) satisfies
the one-dimensional A, condition with a uniform constant. Theorem 7.14
now follows at once from Theorem 7.3.

If we define A} = {w : Msw < Cw a.e.}, then A7 weights can be factored
in terms of A] weights.

Theorem 7.15. Let 1 < p < oo. Then w € Ay, if and only if there exist
P

wp, w1 € A} such that w = wow%_ .
This theorem was first proved by J. L. Rubio de Francia; see the paper
cited in Section 5.1.

However, the analogue of Theorem 7.7 is false and (M f)?, 0 < 6 < 1,
need not be in A}. This was proved by F. Soria (A remark on Ay-weights for
the strong mazimal function, Proc. Amer. Math. Soc. 100 (1987), 46-48).

B. Jawerth ( Weighted inequalities for mazimal operators: linearization,
localization and factorization, Amer. J. Math. 108 (1986), 361-414) gave a
different proof of Theorem 7.14 as a corollary to a much more general result.
Let B be a basis, that is, a collection of open sets. Given a weight w, we
define the weighted maximal function with respect to B and w by

1
Mol 2) = 230 iy [, b
if z € Ugep B and 0 otherwise. If w = 1 we simply write Mp. Note that if
B is the collection of all rectangles R with sides parallel to the coordinate
axes, then Mp = M. We say that a weight w satisfies the A, condition
with respect to B, 1 < p < oo, and write w € A, g, if for every B € B,

(1 o) (i =) <

Theorem 7.16. Given a basis B, a weight w and p, 1 < p < oo, let 0 =
w'™?'. Then the following are equivalent:

(1) Mp is bounded on both LP(w) and L¥ (c);
(2) w € Ap, Mg, is bounded on LP (w) and Mg, is bounded on LP (o).

The boundedness of Mg, and Mg, depends on the geometry of the
basis B. If B is the basis of rectangles then the boundedness of these two
operators was proved by R. Fefferman (Strong differentiation with respect
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- measures, Amer. J. Math. 103 (1981), 33-40) and by B. Jawerth and
A. Torchinsky ( The strong mazimal function with respect to measures, Studia
Math. 80 (1984), 261-285). For more general bases, Mp,, is bounded on
L” (w) if and only if the basis satisfies a covering property closely related to
problems of differentiation of the integral. For further details see the article
by Jawerth cited above.

5.9. Norm inequalities with two weights.

A very difficult problem is to generalize the results in this chapter to
L? spaces with different weights; more precisely, given an operator T, to
determine necessary and sufficient conditions on a pair of weights (u,v) for
the operator to be bounded from LP(v) to LP(u), or to satisfy the weak (p, p)
inequality

Wl e R TI@I> A < 5 [ 1P

Complete answers to these questions are known for the Hardy-Littlewood
maximal function. We generalize the A, condition as follows: a pair of
weights (u,v) isin Ap, 1 < p < oo, if

(6 ) )z

Mu(z) < Cu(z) ae z€R™

(When u = v this is exactly the A, condition defined in Section 1.) With
only minor changes we can adapt the proof of Theorem 7.1 to get the fol-
lowing result.

and in A; if

Theorem 7.17. Given p, 1 < p < 00, the weak-type inequality
C
ule R MfE) > )< 5 [ 1P
AP Jgn
holds if and only if (u,v) € Ap.

For the strong (p,p) inequality, however, the A, condition is necessary
but is not sufficient: there exist pairs (u,v) in A, for which the strong (p, p)
inequality is false. This can be seen as follows: since the pair (u, Mu)
is in Ay C Ap, the pair (Mu)!P,«'"%) is in Ay (arguing as in the
proof of Proposition 7.2, we have that (u,v) € 4, and (v'7,u177) € Ay
are equivalent conditions). Then the strong (p',p’) inequality for the pair
(Mu)'~7 u!~?) with u = |f| would imply that M is bounded on L', a
contradiction. (See Proposition 2.14.)

Nevertheless, there is a characterization for the strong (p,p) inequality.
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Theorem 7.18. Given a pair of weights (u,v) and p, 1 < p < oo, the
following are equivalent:

(1) M is a bounded operator from LP(v) to LP(u);
(2) given any cube Q,

(7.18) / M P xo)Pu < C/ 2177 < oo
Q Q

Inequality (7.18) is equivalent to saying that M is bounded on the family
of “test functions” v1~P'xq.

Theorem 7.18 was first proved by E. Sawyer (A characterization of a
two-weight norm inequality for mazimal operators, Studia Math. 75 (1982),
1-11). A simpler version of this proof was given by D. Cruz-Uribe (New
proofs of two-weight norm inequalities for the mazimal operator, Georgian
Math. J. 7 (2000), 33-42). A very different proof was given by Jawerth in
the article cited in the previous section. When u = v, (7.18) is equivalent
to the A, condition, so this result gives another proof of Theorem 7.3. This
was proved by R. Hunt, D. Kurtz and C. J. Neugebauer (4 note on the
equivalence of A, and Sawyer’s condition for equal weights, Conference on
Harmonic Analysis in Honor of Antoni Zygmund, W. Beckner et al., eds.,
vol. 1, pp. 156-158, Wadsworth, Belmont, 1983).

For singular integral operators, almost nothing is known except for the
Hilbert transform. The A, condition is necessary but not sufficient for the
weak (p,p) inequality, 1 < p < oo; see the article by B. Muckenhoupt
and R. Wheeden (Two weight function norm inequalities for the Hardy-
Littlewood mazimal function and the Hilbert transform, Studia Math. 60
(1976), 279-294). For p = 1, Muckenhoupt has conjectured that the A;
condition is necessary and sufficient for the weak (1,1) inequality for the
Hilbert transform. (Also see the next section.) A necessary and sufficient
condition is known for the strong (2, 2) inequality for the Hilbert transform,
or, more precisely, for the conjugate function f on the unit circle. (See
Chapter 3, Section 6.2.) This is due to M. Cotlar and C. Sadosky (On the
Helson-Szegé theorem and a related class of modified Toeplitz kernels, Har-
monic Analysis in Euclidean Spaces, G. Weiss and S. Wainger, eds., vol. 1,
pp. 383-407, Proc. Sympos. Pure Math. 35, Amer. Math. Soc., Providence,
1979).

5.10. More on two weight inequalities.

A general technique for applying weighted inequalities can be summa-
rized as follows: given an operator T, first find a positive operator S such
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* t T is bounded from LP(Su) to LP(u). Then deduce boundedness prop-
erties for T from those of S. (We will use this technique in Chapter 8,
Section 3 below.)

To apply this technique we need to find such two weight inequalities.
Theorem 2.16 above is a result of this kind: the Hardy-Littlewood maximal
function is bounded from LP(Mu) to LP(u). The first attempt to generalize
this result to other operators was due to A. Cérdoba and C. Fefferman (A4
weighted norm inequality for singular integrals, Studia Math. 57 (1976), 97-
101). They showed that if T is a singular integral satisfying the gradient
condition (5.3), then T is a bounded map from LP(M (u®)!/*) into LP(u).
By Theorem 7.7, M(u®)!/* € A; C A, so this result now follows from
Theorem 7.3.

The next theorem gives a sharper result.

Theorem 7.19. Let T be a singular integral satisfying the hypotheses of
Theorem 5.1. Given a weight u, for 1 < p < oo,

TfPu< C | F|P M1y,
]Rn p ]Rn

where [p] is the integer part of p and M* = M o---o M is the k-th iterate of
the mazimal operator. Further, this inequality is sharp since [p| + 1 cannot
be replaced by [p].

Note in particular that singular integral operators are not in general

bounded from LP(Mu) to LP(u). Since M (u®)}/s € A,
MPu(z) < MH(M(u*)/*)(z) < CpM (u®)(2)"/*,

so Theorem 7.19 is stronger than the result of Cérdoba and Fefferman.
It was first proved by J. M. Wilson (Weighted norm inequalities for the
continuous square function, Trans. Amer. Math. Soc. 314 (1989), 661-692)
for 1 < p <2, and for all p > 1 by C. Pérez ( Weighted norm inequalities for
singular integral operators, J. London Math. Soc. 49 (1994), 296-308). In
the same paper Pérez also proved the corresponding weak (1,1) inequality:

we e R 77> < { [ 1M

It is unknown if this inequality is true with M? replaced with M.



Chapter 8

Littlewood-Paley
Theory and Multipliers

1. Some vector-valued inequalities

Our approach to the study of Littlewood-Paley theory will be through the
theory of vector-valued singular integrals introduced in Chapter 5. In this
section we prove some additional vector-valued inequalities which we will
need in later sections using those ideas as well as the weighted norm in-
equalities in Chapter 7.

Theorem 8.1. If T is a convolution operator which is bounded on L%(R™)
and whose associated kernel K satisfies the Hormander condition (5.2), then
foranyr, 1<r<oo, andp,1<p< oo,

(i)

J

)

p

< Cp,r
P

1/r
(Zisr)
J
and forp=1,

{a: €R™: (Z |Tfj(x)|'>1/r > /\}

<&
A

(zisr)”|

Proof. We use Theorem 5.17 with A = B = £". The first inequality is
immediate when p = r since T is bounded on L"(R"), 1 < r < oo. Now
consider the vector-valued operator which associates to each sequence {f;}
the sequence {Tf;}. The kernel associated with this operator is K(z)I,
where I is the identity operator on £. For a convolution operator, conditions

157
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(5.20) and (5.21) reduce to
/ I(K(z —v) — K@)l dz < C,
|z|>2[y]

which in turn is equivalent to the Hérmander condition since
[(K(z—y) = K(@))|le = |K(z — y) — K(z)].
a

A natural problem is to generalize Theorem 8.1 to a sequence of opera-
tors {T}} to get an inequality of the form

oy |(Smar)” (Sr)”
J J

It seems reasonable to conjecture that if the operators T; are uniformly
bounded on L? and the Hérmander condition holds uniformly for their ker-
nels K; then (8.1) holds. However, if p # r this can still be false. The
vector-valued operator which sends {f;} to {Tjf;} has as kernel the op-
erator in L(£",£") which maps the sequence {)\;} to {Kj;(z));}. For this
operator the Hérmander condition becomes
[ swplkila-v) - Ki@ids <G,
le|>2ly] J
and this condition is sufficient for (8.1) to hold.

Nevertheless, we can use Theorem 8.1 to show that an inequality like
(8.1) holds in particular cases. For example, we have the following result.

, l1<pr<oo.
P

< Cp,r
P

Corollary 8.2. Let {I;} be a sequence of intervals on the real line, finite
or infinite, and let {S;} be the sequence of operators defined by (S;f) (€) =

x1;(€)f(€). Then for1 < r,p < o0,

(sar)”

< Cp,r
p

(Z |fjl') v

P
Proof. If I; = (aj,b;) then by (3.9) we have the formula

i
Sifj= 2 (Mo; HM _q; f; — My, HM_,,_f;)

with the obvious modifications if the interval is unbounded. The desired
result now follows if we apply Theorem 8.1 to the Hilbert transform. g

A common technique for proving vector-valued inequalities like (8.1)
involves weighted norm inequalities. The following result is an example of
this approach.
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Theorem 8.3. Let {T;} be a sequence of linear operators which are bounded
on L*(w) for any w € Ay with constants that are uniform in j and which
depend only on the Ay constant of w. Then for all p, 1 < p < oo,

62) [(Zmsr)"| <c| (zue)”

P

Proof. When p = 2 this result is immediate. Now suppose that p > 2.
Then there exists a function u € L/2)’" with norm 1 such that

1/2))2
“(;ﬂ}fjl"’) p=/m;|:rjf,-|2u.

By Theorem 7.7, if 0 < § < 1 then M (u!/%)% is an A; weight (and so is in
Aj) with a constant that depends only on 8. Since u(z) < M(u/%)(z)? a.e.,
it follows that

‘(Z |ijj|2)l/2 <Cs /Rn (Z |fj|2)M(u1/a)a_
’ J

Fix J such that é(p/2)’ > 1 and then apply Holder’s inequality with expo-
nents p/2 and (p/2)’ to get inequality (8.2).

Finally, if p < 2 then, since the adjoint operators T are also bounded
on L?(w), w € Az, we get (8.2) by duality. a

2

4

2. Littlewood-Paley theory

From the Plancherel theorem we know that if we muitiply the Fourier trans-
form of a function in L? by a function of modulus 1, the result is again a
function in L2. Similarly, if we multiply the terms of the Fourier series of
an L? function by +1, we get another function in L2. However, neither of
these properties holds for functions in LP, p # 2. Thus, whether a function
is in LP depends on more than the size of its Fourier transform or Fourier
coefficients.

Littlewood-Paley theory provides a partial substitute in L? for the results
derived from the Plancherel theorem. It shows that membership in LP is
preserved if the Fourier transform or Fourier coefficients are modified by =1
in dyadic blocks. For example, in the case of the Fourier series of an L?
function, if we assign the same factor 1 or —1 to all the coefficients whose
indices lie between 2% and 2kt we get the Fourier series of another L?
function.
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We will first prove the corresponding result for the Fourier transform for
functions defined on R. Let

Aj = (=2%1 —29u (27, 7Y,
and define the operator S; by
(Sif)(6) = xa;(Of(8), jeZ

(The intervals [27,27%1) are called dyadic intervals.) If f € L? then by the
Plancherel theorem

53) [(Sisse)”

by the Littlewood-Paley theorem these two quantities are comparable in LP.

= [ l2;
2

Theorem 8.4 (Littlewood-Paley). Let f € LP(R), 1 < p < co. Then there
exist positive constants c, and Cp such that

()

J

(8.4) llflle <

< Gllfllp-
P

We will prove Theorem 8.4 as a consequence of a similar result, but one
where the operators are defined using smooth functions instead of charac-
teristic functions of intervals. Let ¥ € S(R) be non-negative, have support
in1/2<]¢| <4 and be equal to 1 on 1 < |€] < 2. Define

¥i(€) =v(27¢) and  (5;£) (&) = %) f(©)
It follows immediately that S;3; = S;.

The next result is the analogue of Theorem 8.4 for the S;’s. We will use
it to prove Theorem 8.4; it is also important in its own right.

Theorem 8.5. Let f € LP(R), 1 < p < oo. Then there exists a constant
Cp such that

89 [(sisse)”

J

< Golifllp-
P

Proof. If ¥ = ¢ and ¥;(z) = 29¥(2z), then ¥; = ¢; and S;f = ¥; + f.
Therefore, given the vector-valued operator which maps f to the sequence
{8; f}, it will suffice to prove that it is a bounded operator from LP to LP(£2).
When p = 2, by the Plancherel theorem

. 1/2)2 R
’ (Z |ij!2) - | S rierde <13
j J

since at any value of £ at most 3 of the ;s are non-zero.




2. Littlewood-Paley theory 161

To prove inequality (8.5) we need to show that the kernel {¥;} of the
vector-valued operator satisfies the Hormander condition; to do this it suf-
fices to show that [|[¥}(z)|lz < C |z]~2. (This follows from Proposition 5.2,
which also holds in the vector-valued case.) But

1/2 o
(Swer) < Siwe - S
3 J

j
further, since ¥ € S, |¥'(z)| < Cmin(1, |2|~%). Fix i so that 27% < |z} <
271 Then the left-hand side is bounded by

Cz 2% 4 Clx|~3 Z 277 < Clz| ™2

Jj<i J>i

Proof of Theorem 8.4. By Corollary 8.2 and the identity S;5; = S;,

(i)™ - (s )" <d|(zwmer)”

Therefore, by Theorem 8.5 we immediately get the right-hand inequality in
(8.4).
From the polarization identity and (8.3) we get

/RZ.S"f'$=/Rf§.
{| L] raw <1}
{ /Zsff-ﬁ glly < 1}
p{ |(Z|ijl2>l/2 ) (lejg|2)l/2
<a(

1/2
) IijI2>

<C

4

Hence,

[ fllp = sup

sup

iglly < 1}
14

p
a

These results can be extended to R™ in two different ways. One analogue
of Theorem 8.5 cuts the Fourier transform with smooth functions supported
on the annuli 2971 < [¢| < 27F1; the other generalizes Theorem 8.4 with the
cuts made by characteristic functions of products of dyadic intervals on the
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coordinate axes. We cannot generalize it by using characteristic functions
of annuli: this follows from Theorem 8.32 in Section 8.3 below.

Theorem 8.6. Given ¢ € S(R") with ¥(0) = 0, let Sj, j € Z, be the
operator defined by (S;f) (€) = ¥(277€)f(€). Then for 1 < p < oo,

1/2
(8.6) H (2 S, f|2) < Glflp
P
Furthermore, if for all £ #0
(8.7) o lweIgP =,
J

then we also have

(8.8) 1£lls < G

(Z ISJfP)l .

p

Since ¥ € S and ¥(0) = 0, it satisfies
> WwEIHE<C.
J

Therefore, the proof of the first part of Theorem 8.6 is exactly the same as
the proof of Theorem 8.5, while the proof of the second part is the same
as the proof of the corresponding part of Theorem 8.4 since it follows from
(8.7) that when p = 2 we have equality (up to a constant).

There is a simple method for constructing functions which satisfy (8.7).
Fix ¢ € S(R™), non-negative, radial, decreasing and such that ¢(¢) = 1 if
[€] < 1/2 and ¢(&) = 0if |¢} > 1. Then define

V(€)= 9(¢/2) — 9(£).

It follows immediately that
D EIOP=1, £#0.
J

We will state and prove the next result only for R?; its extension to
higher dimensions follows at once by induction. Dyadic rectangles in the
plane are the Cartesian product of dyadic intervals in R. The associated
operators are then defined as the composition S} 52 where

(S3£) (&1,&) = xa, (&) f(&1, &)

and

(SRf) (&1, &) = xa. (&) f (&1, &2).
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Theorem 8.7. Let f € LP(R%), 1 < p < co. Then there exist positive
constants c, and Cp such that

1/2
el < H (Z |s}s,%f|2)
7.k

< Gyl fllp-
P

Proof. By the same argument as in the proof of Theorem 8.5, and with the
same notation as there, we have that

(8.9) H (,Zk: |5jfk|2)1/2 p (ij |fk|2) v

By Fubini’s theorem, inequality (8.9) is true even if fi is a function of two
variables and Sj acts only on one of them. Furthermore, arguing as in the
proof of Theorem 8.4 (Corollary 8.2 readily adapts to this case) we can also
replace S; by S; since S;S; = S;. But then we can first apply (8.9) and
then Theorem 8.4 (along with Fubini’s theorem since f is a function of two
variables) to get

1/2
\ (Z|S}S£f|2)
Ik

3. The Hérmander multiplier theorem

e

P

< Gllflly.
p

<G
p

1/2
(Z |szf|2)
k

We are now going to give some applications of Littlewood-Paley theory.
In the next three sections we will consider the problem of characterizing
multipliers on LP. More precisely, given a function m, when is the operator
T, defined by (Tmf)A = mf bounded on LP, 1 < p < oo? (We first
considered multipliers on LP(R) in Chapter 3, Section 5; also see Chapter 3,
Section 6.7.)

The Sobolev space L2(R™) is defined to be the set of functions g such
that (1 + [¢]2)%/2§(¢) € L? and the norm of this function is the norm of g in
L%. (When a is a positive integer this definition is equivalent to that given
in Chapter 4, Section 7.7.) Note that if o’ < a, LZ(R™) C L2 (R").

Proposition 8.8. If a > n/2 and g € L2(R™) then § € L*; in particular, g
s continuous and bounded.

Proof. Since (1 + |¢]2)%/2§(¢) = h(¢) € L?,

[wenacs ([ mora)” ([ %) s sl
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It follows from this result that if m € L2 with @ > n/2 then m is a
multiplier on L?, 1 < p < co. In fact, if (T'f)” = mf then Tf = K * f with
K ¢ L. Hormander’s theorem shows that m is a multiplier on LP under
much weaker hypotheses. To prove it we first need to prove a weighted norm
inequality.

Lemma 8.9. Let m € L2, a > n/2, and let A > 0. Define the operator Ty
by (Taf) (§) = m(A)f(§). Then

[ mi@pue <o [ 11@PMua) dz,
R™ R™
where the constant C 1is independent of u and A, and M is the Hardy-

Littlewood mazimal operator.

Proof. If K = m then by our hypothesis, (1 + |z|2)%/2K(z) = R(z) € L?,
and the kernel of T is A™"K(\~!z). Hence,

2, = ARz —y))
/m = e (L4 P1(z— g)P)o72

-n 2
< ||m||L2/ /n 1+ A1 lfz(y)|y)|2)a“(z) dydz
< Colmly [ 1£)20u(s) dy

the second inequality follows by applying the Cauchy-Schwarz inequality
and using the fact that ||R|j2 = ||m||z2, and the third inequality follows if
we integrate in z because (1 + |z|2)7¢ is radial, decreasing and integrable
since a > n/2. (See Proposition 2.7 and Theorem 2.16.) O

2
f(y) dy| u(z)dz

To state Héormander’s theorem, let ¢ € C* be a radial function sup-
ported on 1/2 < |¢] < 2 and such that

Y. TP =1, £40.
j=—o00
Theorem 8.10 (Hormander). Let m be such that for some a > n/2,
sup [|m(27- )9l 2 < oo
j

Then the operator T associated with the multiplier m is bounded on LP(R™),
1 <p<oo.

Proof. We apply Theorem 8.6. First, define the family of operators {S;}
by (ij)ﬂ_(E) = (2779¢) f(€). Then inequality (8.8) holds by our choice of 1.
Now let 1 be another C* function supported on 1/4 < |£| < 4 and equal
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to 1 on 1/2 < [¢] < 2. If we define §; by (S;) (¢) = ¥(279€)f(€), then
S;8; = S; and the family {SJ} satisfies inequality (8.6). (Note that (8.7)
does not necessarily hold for ¢.) Therefore,

1/2 : 1/2
ITfl, < CN (Z ls,-TfP) - c{l (Z |szij|2)
J p 7

The multiplier associated with S;T is ¢(277¢)m(£), so by our hypothesis
and by Lemma 8.9,

4

[ isitusc [ irem,
R™ R~

where C is independent of j. Using this inequality, by an argument analo-
gous to that in the proof of Theorem 8.3 we can prove that for p > 2

1/2 1/2
(o) el
j 4 j

Therefore, if we combine this with inequality (8.6) for {S;} we get

4

: 1/2
ITfl, < c” (z Ism?) <Clfly  p>2
i P

Finally, for p < 2 this inequality follows by duality. (See Chapter 3,
Section 6.7.) O

Hormander'’s theorem is usually stated in the following way.

Corollary 8.11. If for k = [n/2] +1, m € C* away from the origin, and if
for |8 <k

1/2
(8.10) sup R (% / |Dﬂm(§)|2dg) < o0,
R R<|¢|<2R

then m is a multiplier on LP, 1 < p < co. In particular, m is a multiplier if

|DPm(g)] < CleI#1, 18] < k.

Proof. If we make the change of variables £ — R£ in inequality (8.10) and
use the fact that DPm(R-)(€) = R8I(DPm)(RE), we get

1/2
sup (/ |DAm(R-)(€)[? dE) <C.
R 1<[¢l<2
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Since
DP(m()9)(€) = }_ CysD"m(2)D" Ty,
<18l
and since |DPy| < C, it follows that sup ||m(2j-)¢||Li < 0o and so we can
apply Theorem 8.10. ]

Example 8.12.

(1) m(€) = |€|* satisfies the last hypothesis of Corollary 8.11. In fact,
it is easy to see that |DPm(€)] < Cyl¢|~181.

(2) If m is homogeneous of degree 0 and of class C* on the unit sphere
for some k > [n/2] then m is a multiplier on LP(R™), 1 < p < o0.

4. The Marcinkiewicz multiplier theorem

By Corollary 3.8 we know that if m is of bounded variation on R then it is a
multiplier on LP. The Marcinkiewicz multiplier theorem shows that we can
weaken this hypothesis to a condition on dyadic intervals.

Theorem 8.13. Let m be a bounded function which has uniformly bounded
variation on each dyadic interval in R. Then m is a multiplier on LP(R),
1< p<oo.

Proof. The proof is similar to the proof of Corollary 3.8. Given a dyadic
interval I;, let T; be the operator associated with the multiplier myy,. We
will consider the case I; = (27,27%1); the other case is handled in exactly
the same way. For £ € I;

R 3
(mx1,)(©) = m(@) + [ dmi)

27
without loss of generality we may assume that m is right continuous on
R\ {0}. But then

21+1

T;f(z) = m(29)S; £(z) + / Sypov1 f(z) dm(t),

29
where S, 5;+1 is the operator associated with the multiplier x; 25+1}- By (3.9)
and Theorem 7.11, the operators S; and S; 5;+1 are uniformly bounded on
L?(w) if w € Ay. Therefore, by Minkowski’s inequality and our hypotheses,
the operators T are also bounded on L%(w) with a constant depending only
on the L* norm of m and the total variation of m on I;. Hence, by Theorems
8.4 and 8.3, if T is the operator associated with m then

oy <ol (Sisree)”
J

P
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- (s msr)”
(Sise)”

< Clifllp-

P

<C

P

a

We can extend Theorem 8.13 to higher dimensions; we first do so in R2.

Theorem 8.14. Suppose m is a bounded function in the plane, twice dif-
ferentiable in each quadrant of R? and such that

om
sup oty (tl,tz) dt; < 0o,
Sup 6t (t1,t2) dty < 00,
82
sup/ t1,t2)| dt1dty < o0,
ij JIx1, |0t10t2 B0t

where I; and I; are dyadic intervals in R. Then m is a multiplier on LP(R?),
l1<p<oo.

Proof. As before, we restrict our attention to dyadic intervals in Ry. Let
I = (28,24, I; = (29,29%1), and fix (&,&2) € I; x I;. Then

m(£11£2)_/ /J 8t at (t11t2)dtldt2

$1 Om
t1,27) dt 2z to) dt
+2.8t(1’ ) 1+2,8( 2) dtz
+m(2%,2%).
If T; ; is the operator associated with the multiplier mxy,x;, then
%m
T, f(z) = 1, 0010 (t1,82)S}, 04155, g5+1 f (%) dtrdty
3m j 1 a'rn i
+ . 9t a2 (t1,27)5, g+ f(x) dbr + 1, Ot (2, t2) 2:+1f($) dts

+m(2‘, 2)S!S2 f (),

where the superscripts denote the variable on which the operator is acting.
Therefore, T; ; is bounded on L?(w) where w is any weight which satisfies
the Az condition uniformly in each variable (i.e. if w € A3; see Chapter 7,
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Section 5.8). We can now argue as we did in the proof of Theorem 8.13 to
get the desired result. 0O

The proof of Theorem 8.14 extends immediately to higher dimensions;
the only problem is that the notation quickly becomes unwieldy. In R™ the
hypotheses become

9 m

sup/ =
G1yeee sk S Iy X Iy 9, - -- 0,

where the I;’s are dyadic intervals in R and the set {71,...,4} runs over
all the subsets of {1,...,n} containing k elements, 1 < k < n.

(E)' d&ll d{lk < m

5. Bochner-Riesz multipliers

As we discussed in Chapter 1, Section 9, the spherical convergence of Fourier
integrals consists in studying when

Srf(z) = /K e

converges to f (either in L” norm or pointwise almost everywhere) as R — oo
for f € LP. The multiplier of this partial sum operator is x{j¢<r}:

(Srf) (&) = xqe<ryf(£):
When n = 1 we already showed (Proposition 3.6) that this multiplier is
bounded on L”(R), 1 < p < co. For n > 2 this multiplier is not well behaved;
see Section 8.3 below. In higher dimensions, the problem is simpler if we
consider multipliers which are more regular than the characteristic function
of a ball. For example, if we take the Cesaro means of the operators S; for
0 <t < R, we get the operator

onf(e) = & / Suf(z)dt = /E » (1—'%') Feyermie= ag.

This example leads us to consider the following family of operators:

o= (1-4) jo. o>

where A, = max(A,0). For a fixed value of a the operators {S§} are all
dilations of the operator S§, so to prove that these operators are uniformly
bounded on L” it suffices to consider the case R = 1. When n = 1, the
Fourier transform of the function m(¢) = (1 — [¢])% is in L!. (This can
be shown directly by applying integration by parts and then arguing as
in the proof of the Riemann-Lebesgue lemma (Lemma 1.4) to show that
| (z)] < C(1+]|z])~179.) Therefore, by Young’s inequality (Corollary 1.21)
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m is a multiplier on LP, 1 < p < oco. However, in higher dimensions this is
no longer true.

Rather than considering these operators directly, it is customary to re-
place them with the Bochner-Riesz multipliers:

(T*f) (€)= (1 - €5/ (€), a>o0.

For if ¢y and ¢ are C* functions on R with compact support such that
P1(|€]) = ¥2(J€]) = 1 if €] < 1, then we can write

(1= leM% = 1= DT+ lEN ¥ (€N),
(1= 1€N% = (1 = EP)F + D™ (lED)-

Since each term in square brackets is a Hormander multiplier, it follows that
T* is a bounded operator on some LP, 1 < p < o0, if and only if S¢ is.

Our main result is the following.

Theorem 8.15. The Bochner-Riesz multipliers T® satisfy the following:
-1
(1) Ifa > nT then T is bounded on LP(R™), 1 < p < oo.

@) Ifo<a< ”—;1 then T® is bounded on LP(R™) if

and is not bounded if
‘1 3 1‘ S 20+l

2n

For the values of p not considered in Theorem 8.15, see Section 8.3 below.
The value (n — 1)/2 is called the critical index.

The singularity of the Bochner-Riesz multipliers is on the circle |£| = 1;
therefore, to prove Theorem 8.15 we are going to decompose the multipliers
on dyadic annuli whose widths are approximately their distances to the unit
sphere. To be precise: choose functions ¢ € C°(R) which are supported on
1-27%+1 <4 <1 —27%"1 and are such that 0 < ¢ < 1, | DP¢| < C2FI8!
for all multi-indices 3 (where Cj is independent of k), and for 1/2 <¢ <1

D dk(t)=1.
k=1

Now define

$o(t) =1=_ (), 0<t<1/2

k=1
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and let go(t) = 0if ¢ > 1/2. Then
oo

(1= 1€P% =D (1 — 1P (€D)-

k=0

On the support of ¢ the size of 1 — |€|? is approximately 27, so we
define

e (1€]) = 2% (1 — 1) 8k (1€))
in order to write
© -~
(1— 1€ =D 27 e (l¢]).
k=0
This allows us to decompose the operator T¢ as

o0
T°f =) 27%Tf,
k=0
where

(Tif) (&) = o€ (&)

The behavior of operators like the T}’s is given by the next lemma, which
will yield the positive part of Theorem 8.15.

Lemma 8.16. Given 0 < § < 1, let ¢ be a function on R which is supported
onl—40 <t<1-—46 and is such that 0 < ¢ <1 and |Dﬂ¢| < csl8l for
any B. Then for any € > 0 the operator Ty associated with the multiplier
d(|€]) satisfies

8.11) ITafl, < Co~ R+ gy

Proof. Fix K so that K(€) = ¢(¢]) and let a be a positive even integer.
Then by inequality (1.20) and the Plancherel theorem,

(1 + [z K|z < CIT + (—A)*?)¢|l, < C8V2(1 +679) < C670H1/2,

the second inequality follows by our hypotheses on the support of ¢ and the
size of D%¢. By Holder’s inequality this holds for arbitrary a > 0. Given a,
fix s > 1 such that as is an even integer. Then

1+ |2l K2 < ClI(1+ [2*) VoK l2 < (1 + 22 K I * |1 K 1I5'*,

and the desired inequality now follows from the previous argument.
Now let a = n/2 + . Then by Hélder’s inequality

KN < L+ 22K 2l (1 + J21) 2 < Ceb~ (374,
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Therefore, by Young’s inequality (Corollary 1.21) with ¢ = 1, 0o,
_(nz2
ITs£lly < Ceo~CTHI) £l

If we interpolate between these two inequalities and the trivial inequality
when g = 2 we get (8.11). a

To prove the negative part of Theorem 8.15 we need two lemmas.

Lemma 8.17. Ifm is a function with compact support which is a multiplier
on LP for some p, then m € LP.

Proof. Let f € S be such that f = 1 on the support of m. Then f € L?
and so Tpnf € LP, but (T f) =mf =m. O

Lemma 8.18. The Fourier transform of (1 — |€|?)% is
(8.12) K%z)=n""T(a+ l)lxl_%_“J%H(Zwlxl),
where J,, is the Bessel function

(i)# ! its —%
1"—__‘_(/1+2%)1"(%) /—16 (1—32)“ ds.

Ju(t) =
Proof. Inequality (8.12) follows immediately from two results:

(1) If f(z) = fo(lz|) € L*(R™) is radial then f is radial and
f(€) = 2n|€)}-2 /°° fo(s)J%_1(27Ti§|3)sn/2 ds.
0

(2) If j > -1/2, k > =1 and t > 0 then
h+1

T Tk +1) Jo

The proofs of these can be found in Stein and Weiss [18, pp. 155, 170]. O

1 .
Tk () Jj(ts)s7 (1 — 2)* ds.

Proof of Theorem 8.15. By Lemma 8.16, for each k
n=1,y|2-
1Tefly < c2CF Ny g,

Therefore, by Minkowski’s inequality

o =1 221l —ka
1T flp < 0. 3 2Tk gy
k=0

The positive results now follow immediately.
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‘1o prove the negative results, note that from the definition of the Bessel
lunction we have that J,(t) = O(t#) as t — 0. Further, as t — oo, Ju(t) =
t=1/2 (see Stein [17, p. 338]). Hence, by Lemma 8.18

|K*(z)| <C as |z| =0,
and
K*(2)| ~ |z~ (F ) s 2] - co.
Therefore, K* € L? only if

2n

> 0
P> 1+

and so if we combine Lemma 8.17 with a duality argument (see Chapter 3,
Section 6.7) we get that T cannot be bounded if

1 1 >20,+1
2n

6. Return to singular integrals

In this section we apply Littlewood-Paley theory to singular integral opera-
tors. Our main result is the following.

Theorem 8.19. Let K € L'(R™) be a function of compact support such
that for some a > 0

K (&) < Clef™,
and such that

/ K(z)dz=0.
R"
For each integer j let Kj(z) = 279K (27z). Then the operator

Tf(x)= Y Kjxf(z)
j=-o0
satisfies

ITfllp < Collfllp, 1<p<oo.
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The L? norm inequality for the operator T follows at once from the
Plancherel theorem and our hypotheses. Since K has compact support we

also have that |K (€)| < CJ¢|, so
2
2 4. _ 3 Py
[ iri@pa= [ XJ;K,(s)] Fe)de
2

N
< /W ;mzs)l \fe)? de

2
<c, 2 min(IZEl", [2€) HGIR
< ClfI

To prove Theorem 8.19 for arbitrary p > 1 we will decompose the oper-
ator as

Tf= Y Tf,

k=—o00

where each T is gotten by cutting up each multiplier K j into pieces sup-
ported on the annuli 279751 < |¢| < 27975+ (which we will denote by
|€] = 2777%) and summing in j. For each k the corresponding pieces have
supports which are almost disjoint and whose size depends only on k. Be-
cause of this, the sum of the norms of the Ti’s will be dominated by a
convergent geometric series.

Proof. Let ¥ € S(R™) be a radial function whose Fourier transform is
supported on 1/2 < |£| < 2 and which satisfies

>R =1, ¢#0.

k=—

Let 9 (x) = 27%"4(27*z); then by the Plancherel theorem

00
K; = Z K x ;4.

k=—00

Now define

o o]

ka= Z Kj*¢j+k*f= Z (K*’(l)k)j*f.

j=—o00 j=—00
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Then we have that

Tf:sz*fzszj*wj+k*f=;ka
J VY

Suppose the following inequalities were true:

(8.13) B2 < C2H) s,
(814) o e R [Ths(@) > 2 < S EDy gy,

(In fact, we will show (8.13) provided 0 < @ < 1. If @ > 1 then the constant
will be 2~ I¥! but this will not affect the proof.) If we apply the Marcinkiewicz
interpolation theorem (cf. (2.2)) to (8.13) and (8.14), then for 1 < p < 2 we
get that

1T fllp < Cp27 ML + k)] £lp,
where 1/p = 6/2 + (1 — 0). The desired result follows if we sum in k for
1 < p < 2; by a duality argument we get it for 2 < p < oo.

It remains, therefore, to prove (8.13) and (8.14). The first follows from
the definition: since 1,/3,-1/3,,1 is non-zero only if m = j,j £+ 1, by the Plancherel
theorem

j+1 ) ) ) ) X
BB S [ IO ROl Obmer @7

j m=j—1

—2alk|| F( ¢y (2
<cy Jo 2O

< c27H| 13,

The second inequality follows since |K;(£)| < min(|27¢|~¢, |27¢]).

To prove (8.14) we will apply Theorem 5.1; it will suffice to show that
the constant in the Hérmander condition (5.2) for Ty is C(1 + |k|). Fix
y # 0; then

[ |3 K s wste =) - (K v do
2[>2[y|

j==oco

<Y [ ez -2 — (K (20 da

0o Jlal>2

=2/H o [0 3900 =2770) = (K e @) de
5 z|>21-7|y

221"
j
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where I; denotes the j-th summand. If we make the change of variables
y +— 2y then I; becomes I;_;. Since this does not affect the sum, we may
assume that 1 < |y| < 2.

We have several different estimates for the I;’s. First, by the mean value
theorem,

s [ [ K@ -2 —2) - el - o) d s

< [ G [ Wla -2 - @l deds
< CliK 2777,

We will use this estimate if k +j > 0; if k +j < 0 then from the first
inequality we get the better estimate I; < C.

To get the third estimate we may assume without loss of generality that
the support of K is contained in B(0,1). But then

nrf K sw@lds
|z|>2-7
<2 k() / (e — 27%2)| dz dz.
|z|<1 |z|>2-3-k
If j < 0 then |z] > 2|27%2|, so that |z — 27%z| > |z|/2. Hence,

1, < 2|K]; / b(z)| dz < C2+*.
Je|>2-7-k-1

From these estimates we get the following: if k¥ > 0,

o) —k—1

Y <cC 22'1"+221+’° <¢;
j=—o0 Jj=—k j=—o0
if k <0,
[kl-1
Z L<cC 22 i- "+Zl+ E 2+ | < C(1 4+ [k|).
Jj=—o00 J=|k| j=-00
This completes the proof. a

Theorem 8.19 has several applications. The first is a simpler proof of
Theorem 4.12; it requires the following lemma.

Lemma 8.20. If 2 € LI(S™ 1), ¢ > 1, and

Q)

K= e

Tn X{1<|z|<2)
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then for a < 1/¢'
|K(€)] < Cl¢|™

Proof. If we rewrite the Fourier transform in polar coordinates we get
2
k©= [ o [ ere0Tisw = [ awi-gdotw)
Sn—1 1 T Sn—1
where

2 .
I(t) — / e—2mrtd_r.
1

r

Since |I(t)| < min(l,[t|™!), we have that |I(t)] < [¢/™%, 0 < a < 1.
Hence,

K@<l [ 10wlu- €] dow)

Sn-

, 1/q
<o ([ e ant)) "

The last integral does not depend on &’ and is convergent if ag’ < 1. a

Corollary 8.21. If 2 € LI(S™"1), ¢ > 1, and [Q(u)do(u) = 0, then the

singular integral

Q)
ly|

Tf@ =pv. [ TRy

1s bounded on LP, 1 <p < 00.

If we define K as in Lemma 8.20 then
(e ]
Tf= ) Kj+f
j=—o00
and the desired result follows immediately from Theorem 8.19.

Our second application is to a family of square functions.

Corollary 8.22. If K and K; are defined as in Theorem 8.19 then the
square function

- 1/2
o(f) = (.2 |Kj*f|2)

j=—o0

is bounded on LP, 1 < p < o0.
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Proof. First note that given a sequence ¢ = {¢;} such that for each j,
¢; = %1, if we define the operator

Tf=Y €K;xf,
)

then it follows from the proof of Theorem 8.19 that ||T¢f|l, < Cpllfll, with
the constant C, independent of e.

Recall that the Rademacher functions are defined as follows:

-1, 0<t<1/2,
ro(t) = /
1, 1/2<t<l,

and for j > 1, r;(t) = ro(27t). (We extend rg to all of R as a periodic func-
tion.) The Rademacher functions form an orthonormal system in L2([0, 1]);
furthermore, if

[ o)
F(t) =) _ajr(t) € L*([0,1))
=0
then F € LP([0,1]), 1 < p < oo, and there exist positive constants 4, and
Bp such that
- 1/2
AllFllp < IIFllz = | D lasl* | < BollFllp.
=0
(See Stein [15, p. 104].) Therefore,

p/2 1
- e ()2
y(f)(m)"—(XJ:IK; f(x>|) <P /0 ]

If we integrate with respect to £ and apply Fubini’s theorem, then for each
t we have an operator like T, so the desired inequality follows by the above
observation. O

P
Z‘I‘j(t)Kj * f(z)| dt.

For our final application, note that in the statement of Theorem 8.19
and Corollary 8.22 we can replace K € L! by a finite Borel measure with
compact support whose Fourier transform decays quickly enough.

Corollary 8.23. If u is a finite Borel measure with compact support and
such that for some a > 0,

|2(8)] < Cl¢l™%,

then the mazimal function

Mj(z) = sup
J

/ f(z — Py) du(y)
-

18 bounded on LP, 1 < p < co.



178 8. Littlewood-Paley Theory and Multipliers

Proof. Let ¢ € S(R™) have compact support and be such that #(0) = 1.
Define the measure 0 = pu—[1(0)¢; then o satisfies the hypotheses of Theorem
8.19. Therefore, from the definition of M and from Proposition 2.7 we have
that

/ £ (@ ~ 2y)d(y) dy
R»

Mf(z) < suploj x f(z)] + |4(0)] sup
J J

1/2
< (Z oy + f(x)lz) +1(0)| M (),
J

where M is the Hardy-Littlewood maximal operator. By Corollary 8.22 the
square function in the last term is bounded on L?, so we are done. O

If u is Lebesgue measure on the unit sphere S*~! then the integral
/R flz —2y) du(y)

is the average of f on the sphere centered at = with radius 27J. In this case
the corresponding maximal function is called the dyadic spherical maximal
function. Since

la(é)] < Clg|t-mf2

(apply Lemma 8.18 with fq replaced by the Dirac delta at 1), Corollary 8.23
immediately implies the following result.

Corollary 8.24. If n > 2 then the dyadic spherical mazimal function is
bounded on LP, 1 < p < o0.

7. The maximal function and the Hilbert
transform along a parabola

Let L be the parabolic operator
_ Ou 0%u

U= — — —5.
Oz, Oz%

If we take the Fourier transform then, arguing as in Chapter 4, Section 5,

we get

0 02
oz, =T, 5 = Ta(Lw),
where
- 271'1:62 2
(Ihf) (61, &2) = m‘lgf(fh&)y
- __ antalr
(T2f) (61,6) = f&1,&2).

2mifa + 41!’2'{1 |2
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Unlike the multipliers we considered in Chapter 4, these multipliers are
not homogeneous of degree 0. However, they do satisfy the following condi-
tion:

m(’\Eh )‘262) = m(El) 62)) A>0.

By an argument analogous to the proof of Proposition 4.3, we can show that
if K(x1,z2) is the Fourier transform of m then K satisfies the homogeneity
condition

K(\x1, \2z5) = A3 K (x1,22), A > 0.

This example leads us to consider operators of the following type. Given
(1,z2) € R%\ {(0,0)}, there exist unique values r > 0 and 6 € S? such that
z1 = rcos(d) and z2 = r’sin(f). Define () = K(cos(f),sin()); then
K(z1,22) = r~3Q(6). Define the operator T by

Tf(zly I2)

=p.v. /]R2 K(y1,y2) f(x1 — y1, T2 — y2) dy1dy

=p.v. /oo /21r Mf(:::l — rcos(8), z2 — r2sin(8))(1 + sin?(9)) drdd.
0 Jo r

If Q6+ 7) = —Q(0) (i-e. if K is odd), then by the same argument as we
used in the method of rotations (see Corollary 4.8),

Tf(z1,z2) = /01r Q(8) Hg(z1,z2)(1 + sin?(8)) d,
where

Hgf(z1,22) = p.v. /R f(z1 — rcos(f), za — 2 sgn(r) sin(G))dT—r.

The operator Hp is the Hilbert transform along the (odd) parabola
(r cos(8),r? sgn(r)sin(6)), r € R. (When 6 = 0 or 7/2 this is a line and
we get the usual Hilbert transform.) By the proof of Proposition 4.6, if
Q € L}(S") and if the operators Hy were uniformly bounded on L?, then T
would also be bounded.

For simplicity, the remainder of this section is devoted to proving that
the Hilbert transform and the maximal function along the parabola I'(t) =
(t,t?) are bounded on LP(R?), 1 < p < co. More precisely, we will consider

dt
Hr(l'l,-’l"Z) = pV/ f(xl —t,.’l:z _tz)T)
R

1 [h 2
ﬂ/_hf(zl——t,xg——t )dt .

A similar argument shows that the operatots Hy are uniformly bounded.

Mrp(z, z2) = sup
h>0
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Our approach will be to decompose the operators Hr and Mr in a way
similar to the decomposition done in the previous section. For j € Z, let o;
and p; be finite measures which act on a continuous function g by

dt
(8.15) =] A
21 <|t|<2i+!
1
8.16 (9) = — t,t2) dt.
(8.16) u3(9) = /y(wm olt, )
Then
oo
(8.17) Hrf=Y o5+,
—00
and
(8.18) Mrf < 2supy; *|fl;
J

the latter inequality holds since if 27 < h < 2771 then
1 I
‘ / flzy —t,zo —t2)dt| < == oiF 2 x| f).

i=—00

Using these decompositions, we will derive the boundedness of Hr and
Mr from two more general results. Hereafter, given a measure o, let |o]
denote its total variation measure and let ||o|| denote its total variation.

Theorem 8.25. Let {0;}jez be a sequence of finite Borel measures with
llojll £ C and such that for some a > 0

(8.19) 165(6)] < Cmin(|276]°%, |276:|7°).
If the operator
o*(f) = 51;p||01‘| * fl

s a bounded operator on L9 for some q > 1, then the operators

Tf= Y ojxf and g(f)={ D loj*fI

j=—00 Jj=—00

are bounded on LP provided |1/p — 1/2| < 1/2q.

Proof. Define the operator S; by (S;) (€) = xa, (&) f(€), where
Aj = (=271, 2]y (27,291,
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Then

o)

Tf= Y Tif,

k=—o00
where
[e o]
Tef = Y 0j*Sjkf.
j=—o00

We can now argue as we did in proving (8.13) in Theorem 8.19: by
applying the Plancherel theorem and (8.19) we get

(8.20) [T fll2 < C27*¥) £,

Define pg by 1/2 — 1/py = 1/2g; equivalently, ¢ = (po/2)’. We will first
prove that

(8.21) ” (Z loj * 9j|2> v < CH (Z |gj|2) v
J Po j

Since |o; * g|2 < ||loj|(lo;] * |gj|?), and since the square of the left-hand side
of (8.21) is the po/2 norm of Y |o; * g|?, by duality there exists u € L9,
[lullq = 1, such that the left-hand side equals

oixgilfu<C / ail*|lgiP lu < C / 120* (u).
/RD sPusCY [ osllafus O [ oot

Inequality (8.21) now follows by Hdlder’s inequality and our hypothesis on
o*. Therefore, since S;S; f = 0 unless i = j, by Theorem 8.4 and inequality
(8.21),

Po

I Tk fllpo < C

oo 1/2
( Z loj * j+kf|2)

j=—c0

( i |Sj+kf|2) "

j=—co

< Clifllpo-

If we interpolate between this and inequality (8.20) and sum in k we get
that T is bounded on L? for 2 < p < pg. Then by duality we get the desired
result.

pPo

<c

Po

Finally, the boundedness of g(f) follows by the same argument as in the
proof of Corollary 8.22. O
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Theorem 8.26. Let {u1;} be a sequence of positive Borel measures on R?
with ||u;]] < C and such that for some a >0

(8.22) l2;(6)| < Cl2&l™,
(8.23) 25(8) — 1;(0,&)| < C|27& |
Let

My f = sup|p * f|
J

be a mazximal operator in the variable 2, where the measures ,u? have Fourier
transforms [1;(0,&2). If Ma is bounded on LP(R), 1 < p < oo, then the
mazimal operator

Mf(z) = sup|u; * f(z)|
j
is also bounded on LP(R?), 1 < p < oo.

Proof. Fix ¢ € S(R) such that ¢(0) = 1, and for each j define the measure
; by

5;(6) = ;(6) — 5(0,£)$(21).
Then the G;’s satisfy the hypotheses of Theorem 8.25: for the estimate with
negative exponent in (8.19) use (8.22) and bound |¢(t)| by Ct~¢; for the
estimate with positive exponent, add and subtract 1;(0,&2) and apply the

mean value theorem. Let g and 6* be the associated operators. Then if we
argue exactly as we did in the proof of Corollary 8.23 we get that

(8.24) Mf(z) < §(f)(z) + CMaM f(2),
(8.25) 7" (f)(z) < Mf(z) + CMaM f (),
where M is the Hardy-Littlewood maximal operator in the first variable.

By the Plancherel theorem, §(f) is bounded on L. Therefore, by (8.24)
and our hypothesis on M3, M is also bounded on L?, so by (8.25), &*(f)
is bounded on L2. Hence, by Theorem 8.25, §(f) is bounded on L” for
4/3 < p < 4. But then from (8.24) and (8.25) we have that M and 6* are
also bounded on this range. Theorem 8.25 then gives us that g is bounded
on 8/7 < p < 8. If we apply this “boot-strapping” argument repeatedly, we
get that M, ¢* and g are bounded on LP, 1 < p < oo. m]

In order to apply these theorems to the operators Hr and Mr, we need
to estimate the Fourier transforms of the measures o; and p; defined in
(8.17) and (8.18). We can estimate these oscillatory integrals using Van der
Corput’s lemma; because this result is of independent interest we give its
proof.
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Lemma 8.27 (Van der Corput’s Lemma). Let

I(a,b) = / ' eth(® gt
Then ’
(1) if |K'(t)} = A > 0 and I’ is monotonic,
[1(a,b)] < CA7Y,
(2) if h € C*([a,b]) and |AF)(t)| > X > 0,
[I(a,b)| < CA™VE,

In either case the constants are independent of a and b.

Proof. (1) If we integrate by parts we get
b . dt eih(b) eih(a) b 1
= b (£)eih(d) . — _ . ih(t)
o= [0 o = - e, 0 ()

Therefore, since k' is monotonic,
2 [t 1 b 1 4
1 <z = )
o3+ [ ()| =5 | [ ¢ ()| <3

(2) We will prove this for k = 2; for k > 2 the result follows by induction.
First, without loss of generality we may assume that A”(t) > A > 0. Then
K (t) is increasing and h'(to) = 0 for at most one ¢y € (a,b). If such a ¢
exists, for § > 0 define

J1 ={t€(a,b) :t<t0—6},
J2 = (t0_61t0+5)n(a7b)>
J3 = {t € (a,b) : t > tg+8}.

(Some of these may be empty.) On J; and J3, |h'(t)| > Ad, so arguing as in
(1) we get

2

/ eth(® dt‘ < 8(N\)~L
J1UJ3

The integral on Jj is less than 26, so if we let § = A™1/2 we get the desired
result.

If b’ is never 0 on (a,b) then we can apply a similar argument with a or
b in place of ty, depending on whether k' is positive or negative. O

Lemma 8.28. Let
b
1(b) = / eilter+t%) gy,
1

Then for 1 < b < 2 and |&] > 1, [I(b)| < Cl&1|~Y/2.
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Proof. Let h(t) = t&1+t%€;. When [&1] > 8|6, |[R'(t)] = |6 +2t&] > |€1]/2,
so by Van der Corput’s lemma, |I(b)] < C|&|™! < C|€]7Y/2, where the
second inequality follows from our assumption on &;.

By the same lemma, since A" (t) = 2&, |I(b)] < C|£2| /2 for any & and
€;. When |£1] < 8|&y], this implies that |I(b)| < C|&]~1/2. 0

We can now use Theorems 8.25 and 8.26 to prove the desired result.

Corollary 8.29. The operators Hr and Mr are bounded on LP(R?) for 1 <
p< oo and 1< p < oo respectively.

Proof. Let oj, u; be as in (8.15) and (8.16). Then by Lemma 8.28, for
|€1] > 1 we have that
lao(&)1, 160(€)] < Cléa] V2.
(To get the estimate for 6o use integration by parts.) Then from the relations
A5(6) = ho(2761,2%62),  8;(€) = 60(261,2%62),
we get
125(©)], 16;(9)] < Cl7&| /2, 126 > 1.
The estimates
165061, 185(€) = ;(0,&)] < C|2°&|
follow immediately from the definition.

The maximal operator My of Theorem 8.26 here becomes

/ g(l‘g — t2) dt|.
27 <e|<2+!

If we make the change of variables s = t2 we see that M, is dominated by
the one-dimensional Hardy-Littlewood maximal function and so is bounded
on LP(R), 1 < p < co. Therefore, by Theorem 8.26, Mr is bounded on
LP(RZ), 1<p<oo.

Finally, the maximal operator ¢* in Theorem 8.25 satisfies o*(f) < Mrf,
so by that result it follows that Hy is bounded on LP(R?),1<p<oo. O

Sl;p W

8. Notes and further results

8.1. References.

The original results of J. E. Littlewood and R. A. E. C. Paley are found
in Theorems on Fourier series and power series, I (J. London Math. Soc.
6 (1931), 230-233) and Theorems on Fourier series and power series, II
(Proc. London Math. Soc. 42 (1936), 52-89). They used techniques from
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complex variables. (See Zygmund [21].) The approach taken here is de-
rived from A. Benedek, A. P. Calderén and R. Panzone (Convolution oper-
ators with Banach-space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48
(1962), 356-365). Also see J. L. Rubio de Francia, F. J. Ruiz and J. L. Tor-
rea (Calderdn-Zygmund theory for operator-valued kernels, Adv. in Math.
62 (1986), 7-48.) The Hormander multiplier theorem first appeared in Es-
timates for translation invariant operators in LP-spaces (Acta Math. 104
(1960), 93-139). The Marcinkiewicz multiplier theorem can be found in Sur
les multiplicateurs des séries de Fourier (Studia Math. 8 (1939), 78-91).
The proofs given in the text are different from the originals. In Hérmander’s
theorem it can also be shown that the multiplier is weak (1,1). Bochner-
Riesz multipliers were introduced by S. Bochner (Summation of multiple
Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), 175-
207). The methods in Sections 6 and 7 are adapted from J. Duoandikoetxea
and J. L. Rubio de Francia (Mazimal and singular integral operators via
Fourier transform estimates, Invent. Math. 84 (1986), 541-561). For refer-
ences on singular integrals and maximal functions on curves, see Section 8.8
below. Van der Corput’s lemma originally appeared in Zahlentheoretische
Abschitzungen (Math. Ann. 84 (1921), 53-79).

There are other versions of the Littlewood-Paley theory (with different
square functions and with continuous parameter) which can be found, for
example, in Stein [15, Chapter 4].

Theorem 8.6 can be thought of as a characterization of LP spaces via
the Littlewood-Paley decomposition given by {S;f}. In a similar way many
other spaces—including Besov spaces and Triebel-Lizorkin spaces—can be
characterized using different mixed norm inequalities for the Littlewood-
Paley decomposition. For more information see, for instance, the books by
M. Frazier, B. Jawerth and G. Weiss (Littlewood- Paley theory and the study
of function spaces, CBMS Regional Conference Series in Mathematics 79,
Amer. Math. Soc., Providence, 1991) and H. Triebel (Theory of function
spaces II, Birkhduser, Basel, 1992).

8.2. Other Littlewood-Paley inequalities.

Theorem 8.30. Let {I;} be any sequence of disjoint intervals in R, and
define the operator S; by (S;f) (§) = XI; (6)f(€). Then for 2 <p < oo,

()"

< Cpllfllp-
P

When I; = (4,5 + 1) this theorem was first proved by L. Carleson
(On the Littlewood-Paley theorem, Report, Mittag-Leffler Inst., Djursholm,
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1967); new proofs were later given by A. Cérdoba (Some remarks on the
Littlewood-Paley theory, Rend. Circ. Mat. Palermo 1 (1981), suppl., 75-
80) and J. L. Rubio de Francia (Estimates for some square functions of
Littlewood- Paley type, Publ. Mat. 27 (1983), 81-108). The general result is
due to J. L. Rubio de Francia (A Littlewood-Paley inequality for arbitrary
intervals, Rev. Mat. Iberoamericana 1 (1985), 1-14), and another proof is
due to J. Bourgain (On square functions on the trigonometric system, Bull.
Soc. Math. Belg. Sér. B 37 (1985), 20-26). By taking fy = X[o,n] One can
see that this result is false if 1 <p < 2.

A generalization of Theorem 8.30 in R™ is due to J. L. Journé ( Calderdn-
Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1 (1985),
55-91). His proof is quite difficult, especially when compared to the proof
for n = 1. Simpler proofs were later given by P. Sjélin (A note on Littlewood-
Paley decompositions with arbitrary intervals, J. Approx. Theory 48 (1986),
328-334), F. Soria (A note on a Littlewood-Paley inequality for arbitrary
intervals in R?, J. London Math. Soc. 36 (1987), 137-142), and S. Sato
(Note on a Littlewood-Paley operator in higher dimensions, J. London Math.
Soc. 42 (1990), 527-534).

Theorem 8.30 can be used to improve the Marcinkiewicz multiplier the-
orem (Theorem 8.13).

Theorem 8.31. If m is bounded and m? is of bounded variation on each
dyadic interval in R, then m is a multiplier on LP, 1 < p < o0o.

This result is due to R. Coifman, J. L. Rubio de Francia and S. Semmes
(Multiplicateurs de Fourier de LP(R) et estimations quadratiques, C. R.
Acad. Sci. Paris 306 (1988), 351-354).

In R? one can prove an “angular” Littlewood-Paley theorem: let A; be
the region bounded by the lines with slopes 2/ and 2/*!, and define S; by

(S;f) (&) = xa,(€)f(€). Then for 1 < p < oo,
1/2
H (L‘ |ij|2)
J

This result is due to A. Nagel, E. M. Stein and S. Wainger (Differentiation
in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 1060-1062).

There are also weighted versions of the Littlewood-Paley inequalities.
Theorem 8.6 is true in LP(w) when w € Ap. This was proved by D. Kurtz
(Littlewood-Paley and multiplier theorems on weighted LP spaces, Trans.
Amer. Math. Soc. 259 (1980), 235-254) for i supported in an annulus,
but his result can be extended to i as in Theorem 8.6. The proof of The-
orem 8.30 by Rubio de Francia actually gives a weighted version with A4/,
weights'when p > 2; the proof is based on techniques introduced in his paper

< Golifllp-
P
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with Ruiz and Torrea cited in Section 8.1. The same result in higher dimen-
sions was proved by H. Lin (Some weighted inequalities on product domains,
Trans. Amer. Math. Soc. 318 (1990), 69-85). It is not known whether the
weighted version of Theorem 8.30 is true in L?(w) with w € A;; however,
it is true in the special case of equally spaced intervals (see the paper by
Rubio de Francia in Publ. Mat. cited above.)

8.3. The multiplier of the ball and Bochner-Riesz multipliers.

In dimension n > 2, the multiplier of the ball exhibits the worst possible
behavior.

Theorem 8.32. The characteristic function of a (Euclidean) ball in R",
n > 2, is not a multiplier on LP if p # 2.

This negative result was proved by C. Fefferman ( The multiplier problem
for the ball, Ann. of Math. 94 (1972), 330-336). This is much stronger than
what can be proved using Lemmas 8.17 and 8.18: this approach only shows
that it is not a multiplier if |1/p — 1/2| > 1/2n. However, it is a multiplier
when restricted to radial functions in L? if |1/p — 1/2| < 1/2n. This is due
to C. S. Herz (On the mean inversion of Fourier and Hankel transforms,
Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999).

For a > 0, the sufficient condition in Theorem 8.14 was first proved by
E. M. Stein (Interpolation of linear operators, Trans. Amer. Math. Soc. 83
(1956), 482-492) using Theorem 1.22. In this result we omit a range of
values for p when 0 < a < (n — 1)/2. Despite the negative result for a = 0
(the multiplier of the ball), it is conjectured that T° is a bounded operator
on L? when

.2
(8.26) p 2 2n

l 1 1 I 2a+1
——-i<

This has only been fully proved in R2. The first proof was given by L. Car-
leson and P. Sjolin (Oscillatory integrals and a multiplier problem for the
disc, Studia Math. 44 (1972), 287-299). Additional proofs were given by
L. Hormander (Oscillatory integrals and multipliers on FLP, Ark. Mat. 11
(1973), 1-11), C. Fefferman (A note on spherical summation multipliers, Is-
rael J. Math. 15 (1973), 44-52) and A. Cérdoba (A note on Bochner-Riesz
operators, Duke Math. J. 46 (1979), 505-511).

In higher dimensions, the first result proving the boundedness of T for
the full range of values of p given by (8.26) for some values of a < (n—1)/2 is
due to C. Fefferman (Inequalities for strongly singular convolution operators,
Acta Math. 124 (1970), 9-36). He showed it for a > (n—1)/4. An important
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aspect of his proof is that it introduced the connection between Bochner-
Riesz multipliers and the restriction of the Fourier transform to spheres. In
the next section we give stronger results derived using this connection.

All of these results can be found in the book by K. M. Davis and
Y. C. Chang [3].

Bochner-Riesz multipliers give rise to a family of summability methods
for the Fourier transform. Besides norm convergence, we can also consider
pointwise convergence, that is, whether

(8.27) lim T3f(2) = f(z) ae,

where
—~ 2 a ~
@ =(1-4) jo.

The usual way to study pointwise convergence is via the associated maxi-
mal operator (T°)* f(z) = supgso |[ThS(2)] (see Chapter 2, Section 2). For
a greater than the critical index (n —1)/2, (T%)* is bounded by the Hardy-
Littlewood maximal operator and pointwise convergence follows immedi-
ately. For a < (n — 1)/2 partial results are known. When n =2 and p > 2,
(8.27) holds in the range given by (8.26). See the paper by A. Carbery
(The boundedness of the mazimal Bochner-Riesz operator on L*(R?), Duke
Math. J. 50 (1983), 409-416). The same result for n > 3, p > 2, and
a> (n—1)/2(n+1) is due to M. Christ (On almost everywhere convergence
of Bochner-Riesz means in higher dimensions, Proc. Amer. Math. Soc. 95
(1985), 16-20). Both results were proved by showing that (7%)* is bounded
on L? for the corresponding values of p. A. Carbery, J. L. Rubio de Francia
and L. Vega (Almost everywhere summability of Fourier integrals, J. Lon-
don Math. Soc. 38 (1988), 513-524) proved that (T*)* is bounded on the
weighted space L?(|z|™#) if 0 < 8 < 14 2a < n, and deduced almost every-
where convergence in these spaces. For those p > 2 such that (8.26) holds,
there exist 3 < 1+ 2a for which LP C L? + L%(|z|~?), so (8.27) holds for
all such p. Note that this gives us the almost everywhere convergence of
Bochner-Riesz means on a larger range of values of p than that for which
we know the boundedness of T (and a fortiori of (T*)*).

8.4. Restriction theorems.

Iff e L! then f is continuous and bounded, so for any S C R®,
I fllze(sy < I fllL1(gn)- In general, however, if f € LP(R™) for some p > 1
and S has measure 0 we cannot, a priori, define f on S since it is only
defined almost everywhere. But if for, say, f € C° we have the estimate
I1fllze(sy < CpagllfllLr(me), then by continuity, if f € LP we can define the
restriction of f to S as an L7 function. If S is contained in a hyperplane
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then this estimate only holds for p = 1. Surprisingly, it is possible to get
nontrivial restriction estimates for some S with non-zero curvature.

The case S = S™7!, the unit sphere in R”, is of particular interest
because it is related to Bochner-Riesz multipliers as the following theorem
of C. Fefferman shows (see the Acta paper cited above).

Theorem 8.33. If for some p > 1,

(8.28) 1£llL2(sn-1) < Cpallfll o),
then T? is bounded on LP for all a such that (8.26) holds.

C. Fefferman proved the restriction inequality for 1 < p < 4n/(3n + 1),
which gives the condition a > (n — 1)/4 mentioned above. This result was
improved by P. Tomas (A restriction theorem for the Fourier transform,
Bull. Amer. Math. Soc. 81 (1975), 477-478), developing earlier work of
E. M. Stein.

Theorem 8.34 (Tomas-Stein). Inequality (8.28) holds for all p such that
2n+2
n+3’

1<p<

As an immediate consequence we have the boundedness of Bochner-Riesz
multipliers in the full range (8.26) if a > (n — 1)/(2n + 2).

It is conjectured that, in general,

(8.29) £l La(sn-1) < Cpall fllLo(gen)
is true if and only if
2n n+1
1< — /> ——q.
Sp< /7 and P2y
That p and g must be restricted to this range can be seen by taking f to be
the characteristic function of a rectangle “adapted” to the sphere, that is, a
rectangle with sides § x §1/2 x - - - x §1/2 centered at (1,0,...,0). Whenn = 2
this conjecture was proved by C. Fefferman in the Acta paper cited above.
Also see the paper by A. Zygmund (On Fourier coefficients and transforms
of functions of two variables, Studia Math. 50 (1974), 189-201). It is also
true when g = 2; this is shown by Theorem 8.34.

Theorem 8.34 was the best known result for n > 3 until it was im-
proved by J. Bourgain (Besicovitch type mazimal operators and applications
to Fourier analysis, Geom. Funct. Anal. 1 (1991), 147-187). He showed
that the restriction conjecture is true for 1 < p < p(n), where p(n) is de-
fined inductively and (2n +2)/(n+3) < p(n) < 2n/(n+ 1)). (For instance,

p(3) = 31/23.)
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There is a close connection between the restriction problem, Bochner-
Riesz multipliers, and the Kakeya maximal operator (see Chapter 2, Section
8.9). All the previously known results for these problems were improved in
Bourgain’s paper.

Further improvements for the Bochner-Riesz conjecture and the restric-
tion problem are again due to J. Bourgain (Some new estimates on oscilla-
tory integrals, Essays on Fourier Analysis in Honor of Elias M. Stein, C. Fef-
ferman, R. Fefferman and S. Wainger, eds., pp. 83-112, Princeton Univ.
Press, Princeton, 1995). In the case n = 3, these were in turn improved
by T. Tao, A. Vargas, and L. Vega (A bilinear approach to the restriction
and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), 967-1000). Very
recently, T. Tao proved a kind of converse of Theorem 8.32 (The Bochner-
Riesz conjecture implies the restriction conjecture, Duke Math. J. 96 (1999),
363-376).

8.5. Weighted norm inequalities for multipliers.

Given a multiplier m and the associated operator T,, we can try to
characterize, just as we did in Chapter 7 for singular integrals, the weights w
such that Ty, is a bounded operator on LP(w). The Marcinkiewicz multiplier
theorem has a straightforward generalization to the weighted case.

Theorem 8.35. Let m be a bounded function which has uniformly bounded
variation on each dyadic interval in R. Then if w € Ap, Ty, is a bounded
operator on LP(R,w), 1 < p < 0o.

This result was proved by D. Kurtz; see the paper cited in Section 8.2
above. In it he also proved a weighted analogue of Theorem 8.14.

For the multipliers in Hérmander’s theorem (Corollary 8.11) the A, con-
dition is no longer sufficient; however, the following is true.

Theorem 8.36. Forn > 2, let k = [n/2] + 1. Suppose n/k < p < 0o and
w € Apk/n, 011 < p < (n/k) and T = Api/n- Then, if m is a multiplier
which satisfies (8.10), Tp, is a bounded operator on LP(w). If n > 2 then we
may extend the range of p’s to include the endpoints p = n/k and p = (n/k)’.

Theorem 8.36 was proved by D. Kurtz and R. Wheeden (Results on
weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255
(1979), 343-362).

Much less is known about weighted norm inequalities for Bochner-Riesz
multipliers. For a > (n — 1)/2, it is known that T is bounded on LP(w),
1 <p < oo, when w € Ap. When a > (n — 1)/2 it can be shown that
|T®f(z)| < CM f(z), where M is the Hardy-Littlewood maximal operator,
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so this follows at once from Theorem 7.3. For the critical index a = (n—1)/2,
this is due to X. Shi and Q. Sun ( Weighted norm inequalities for Bochner-
Riesz operators and singular integral operators, Proc. Amer. Math. Soc. 116
(1992), 665-673). A different proof follows from results in the paper by
Duoandikoetxea and Rubio de Francia cited above. In this case the operator
is also weak (1,1) with respect to A; weights. See the paper by A. Vargas
(Weighted weak type (1,1) bounds for rough operators, J. London Math.
Soc. 54 (1996), 297-310). For some partial results in the general case, see
the paper by K. Andersen (Weighted norm inequalities for Bochner-Riesz
spherical summation multipliers, Proc. Amer. Math. Soc. 103 (1988), 165-
171).

8.6. The spherical maximal function.

In Corollary 8.24 we proved that the dyadic spherical maximal function
is bounded on LP, 1 < p < oo, for n > 2. This was first proved independently
by C. Calderén (Lacunary spherical means, Illinois J. Math. 23 (1979), 476—
484) and R. Coifman and G. Weiss (Review of the book Littlewood-Paley and
multiplier theory by R. E. Edwards and G. I. Gaudry, Bull. Amer. Math.
Soc. 84 (1978), 242-250). When we consider the maximal function with
continuous parameter,

Mf(z) = sup

t>0

fz —ty)do(y)|,
sn—l

the following result is true.

Theorem 8.37. M is bounded on LP(R™) if and only if p > n/(n — 1).

For n > 3, Theorem 8.37 was proved by E. M. Stein (Mazimal functions:
Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), 2174-2175), and
for n = 2 by J. Bourgain {Averages in the plane over convex curves and
mazimal operators, J. Analyse Math. 47 (1986), 69-85). Other proofs for
n > 3 are due to M. Cowling and G. Mauceri (On mazimal functions,
Rend. Sem. Mat. Fis. Milano 49 (1979), 79-87) and J. L. Rubio de Francia
(Mazimal functions and Fourier transforms, Duke Math. J. 53 (1986), 395
404). This last proof is close in spirit to the method developed in Section 6:
a decomposition of the multiplier into dyadic pieces, an L? estimate for each
piece with exponential decay, and an L! estimate derived with vector-valued
techniques.

In the case n = 2, new proofs were given by G. Mockenhaupt, A. Seeger
and C. Sogge (Wave front sets, local smoothing and Bourgain’s circular maz-
imal theorem, Ann. of Math. 136 (1992), 207-218) and W. Schlag (A geo-
metric proof of the circular mazimal theorem, Duke Math. J. 93 (1998),
505-533).
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Weighted norm inequalities for the spherical maximal operator (with
both discrete and continuous parameters) are in J. Duoandikoetxea and
L. Vega (Spherical means and weighted inequalities, J. London Math. Soc.
53 (1996), 343-353).

8.7. Further results for singular integrals.

The arguments in Section 7 readily extend to prove additional results
about singular integrals which cannot be proved using the method of rota-
tions. For example, define the operator T to be convolution with the kernel
Q(z')

jz|™

K(z) = h(|z])

where Q € LI(S"!) for some ¢ > 1 and has zero integral, and h satisfies
the growth condition
1 [k )

sup — [h(2)|* dt < oo.

r>0 R Jo
Then the proof of Theorem 8.19 can be readily adapted to show that T
is bounded on LP; 1 < p < oco. Singular integrals of this type were first
considered by R. Fefferman (A note on singular integrals, Proc. Amer. Math.

Soc. 74 (1979), 266-270), and J. Namazi (A4 singular integral, Proc. Amer.
Math. Soc. 96 (1986), 421-424).

Similar techniques can also be used to prove weighted norm inequalities.

Theorem 8.38. Given 2 € L®(S™™!) such that [Q(u)do(u) = 0, define
the singular integral
Q@)

Tf(z) =p.v. /R R -

Ifwe Ap, 1 <p < oo, then T is bounded on LP(w).

The proof of this result can be found in the paper by Duoandikoetxea
and Rubio de Francia cited above. The hypothesis that 2 € L* cannot be
weakened to Q € L9, ¢ < oo; counter-examples were first given by B. Muck-
enhoupt and R. Wheeden ( Weighted norm inequalities for singular and frac-
tional integrals, Trans. Amer. Math. Soc. 161 (1971), 249-258). When
Q€ L% 1<qg<oo,T is bounded on LP(w) if ¢ <p < 00 and w € A,y or
if l<p<gandw'™? ¢ Ap/q- (Cf. Theorem 8.36 above.) This condition
was discovered independently by J. Duoandikoetxea (Weighted norm in-
equalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336
(1993), 869-880) and D. Watson ( Weighted estimates for singular integrals
via Fourier transform estimates, Duke Math. J. 60 (1990), 389-399).

Additional weighted inequalities for these operators, together with struc-
tural properties of the weights, are given by D. Watson (Vector-valued
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inequalities, factorization, and eztrapolation for a family of rough opera-
tors, J. Funct. Anal. 121 (1994), 389-415) and J. Duoandikoetxea (Almost-
orthogonality and weighted inequalities, Contemp. Math. 189 (1995), 213-
226). Weighted weak (1, 1) inequalities were proved by Vargas in the paper
cited in Section 8.5.

8.8. Operators on curves.

Besides the motivating example described in Section 7, singular integrals
and maximal functions on curves have appeared in several different contexts
and have been studied extensively. The first results were for homogeneous
curves (curves of the type (¢%1,t%2,...,t% ) and some more general versions);
these results were later extended to “well-curved” curves: curves I' whose
derivatives I'(0),I”(0), ... span R™. The survey article by E. M. Stein and
S. Wainger (Problems in harmonic analysis related to curvature, Bull. Amer.
Math. Soc. 84 (1978), 1239-1295) contains the principal results and their
proofs. Another good summary is in the article by Wainger (Averages and
singular integrals over lower dimensional sets) in [16].

The next case considered was that of “flat” curves—that is, curves whose
derivatives at the origin all vanish. These were first considered in R?; see
(among others) the article by Duoandikoetxea and Rubio de Francia cited
above, the articles by M. Christ (Hilbert transforms along curves, II: A flat
case, Duke Math. J. 52 (1985), 887-894), A. Nagel, J. Vance, S. Wainger and
D. Weinberg (Hilbert transforms for convex curves, Duke Math. J. 50 (1983),
735-744, and Mazimal function for convex curves, Duke Math. J. 52 (1985),
715-722), H. Carlsson et al. (L? estimates for mazimal functions and Hilbert
transforms along flat convex curves in R?, Bull. Amer. Math. Soc. 14 (1986),
263-267), A. Cérdoba and J. L. Rubio de Francia ( Estimates for Wainger’s
singular integrals along curves, Rev. Mat. Iberoamericana 2 (1986), 105—
117), and A. Carbery, M. Christ, J. Vance, S. Wainger, and D. Watson
(Operators associated to flat plane curves: LP estimates via dilation methods,
Duke Math. J. 59 (1989), 675-700).

The extension of the results on flat curves to higher dimensions has
been more difficult. See the articles by A. Nagel, J. Vance, S. Wainger and
D. Weinberg ( The Hilbert transform for convex curves in R™, Amer. J. Math.
108 (1986), 485-504), A. Carbery, J. Vance, S. Wainger and D. Watson (The
Hilbert transform and mazimal function along flat curves, dilations, and
differential equations, Amer. J. Math. 116 (1994), 1203-1239), A. Carbery,
J. Vance, S. Wainger, D. Watson and J. Wright (L? estimates for operators
associated to flat curves without the Fourier transform, Pacific J. Math.
167 (1995), 243-262), and A. Carbery and S. Ziesler (Hilbert transforms
and mazimal functions along rough flat curves, Rev. Mat. Iberoamericana
10 (1994), 379-393). Also see the survey article by A. Carbery, J. Vance,
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S. Wainger and D. Watson (Dilations associated to flat curves in R™, Essays
on Fourier Analysis in Honor of Elias M. Stein, C. Fefferman, R. Fefferman
and S. Wainger, eds., pp. 113-126, Princeton Univ. Press, Princeton, 1995).

In recent years non-convolution operators have also been studied. In
this case the operators are defined on variable curves, that is, curves which
also depend on the point z. In a similar fashion, curves have been replaced
by surfaces, both in the convolution and the variable case. Some examples
can be found in Stein {17, Chapter 11].



Chapter 9

The T'1 Theorem

1. Cotlar’s lemma

In this chapter we return to a question we first considered in Chapter 5:
given a Calderén-Zygmund operator T with associated kernel K, when is
T bounded on L?? If T is a convolution operator, the problem reduces to
showing that K € L®. For operators which are not convolution operators
the problem is much more difficult. In some cases, however, a result due to
M. Cotlar is useful.

Lemma 9.1 (Cotlar’s Lemma). Let H be a Hilbert space, {T}} a sequence

of bounded linear operators on H with adjoints {T}}, and {a(j)} a sequence
of non-negative numbers such that

NTT5 N ey + N T3 Till ey < a(i - 5).
Then for all integers n and m, n < m,

Xm::r,- < i a(i)'/2.

j=n L(H) i=—00
Proof. Let
m
S=3"T;
j=n

195
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Then ||S|| = ||SS*||/%; in fact, for any integer k > 0, ||S|| = [|(SS*)*||"/?~.
But

*\ k
(SS ) = Z TJ‘ ’ -72k 1 .721:’
JiyeeaJ2e=n
and the norm of each summand can be bounded in two ways:
15 T3, - Tiae o T | S W TR T3 W T T N
< a(j1— J2) - - - afok-1 — J2k),

and

”T_‘“T;; v ‘7}2;‘ 1 J2k” < “TJI ””T*ngjall ” Fok—2 .721: 1“” J2k “
< a(0)'2a(ja — j3) - - - a(jok-2 — Jak-1)a(0)/2.

If we take the geometric mean of both bounds and sum over all the j; we
get

m
1(SS)¥) < a2 > a(is — j2)Y%a(j2 — j3)/% -~ a(jak-1 — jok) /2.
J1pensJ2k=n
Fix j1,...,Jj2k-1 and sum over jzi; then sum over jx_1 and so on down to

j1- Then

oo 2k-1
1(SS*)¥|| < a(0)1/2(m -n+1) ( Z a(i)1/2> 7

3=—00

where m —n + 1 is the number of terms which appear when we sum in jj.
Hence,

ISH = 1(SS")FIM/* < (m —n+1)Y2 3 7 a(i)/?,
i=—00
and if we let k tend to infinity we get the desired result. O

If for all z in a dense subset of H the sum
I
—00

exists, we can extend it to an operator on all of H; the norm of this operator
is bounded by 3" a()!/2. In fact, it is not necessary to assume that 3 Tz
exists on a dense subset because the hypotheses of Cotlar’s lemma imply
that the series converges for any x € H.
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Example 9.2 (An application to the Hilbert transform). Let H = L%(R)
and for f € L*(R) define

f(z) = ACE))
Tyf(z) = /ﬂ(mszm —a

For each integer j, |T;f(z)| < 4M f(z) (where M is the Hardy-Littlewood
maximal operator), so T} is clearly bounded on L?(R). We will use Cotlar’s
lemma to prove that any finite sum of the T;’s is uniformly bounded, which
in turn proves that the truncated integrals of the Hilbert transform are uni-
formly bounded. (Actually, we will show that only those integrals truncated
at the dyadic numbers 2/ are bounded, but it is easy to pass to any other
truncation.)

Since T; = ~Tj, we only need to estimate ||T,T;||. If we let K;(z) =
z7xa,(z), where Aj = {z € R: 27 < |z| < 27%'}, then T} f(z) = Kj * f(z)
and T;T; f(z) = K; * K; * f(z). Hence,

ITT;l < 1K * Kjlla.

However,

1 1
K x Kj(z) = /IR zXAi(t)x—_:XAJ (z —t)dt.

Without loss of generality we may assume that 7 < j and z > 0. Then K; *
K;(z) = 0if z ¢ (29 —2¢71, 2741 4 2¢+1) "and on this interval, |K; * Kj(z)| <
2-27J. We will use this estimate on the intervals (27 — 2¢+1 27 4 2¢+1) and
(2741 i1 gi+1 | 9itl),
On the rest of the interval, if ¢ € A; then z —t € A, so that
K-*K-(x)—/ L (= = 1) xa (@ — 0 dt;
1 J - R tXAi r—t T XA] J )
hence, |K, * K;(z)| < 2272, Therefore,
IK; * K|l < c271=d1,

and this estimate allows us to apply Cotlar’s lemma as desired.

2. Carleson measures

Definition 9.3. A positive measure v on R} ! is a Carleson measure if for
every cube @ in R"

v(@Q x (0,4Q))) < ClI,

where [(Q) is the side length of Q. The infimum of the possible values of
the constant C is called the Carleson constant of v and is denoted by |v|.
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An example of a Carleson measure in the upper half-plane Ri is drdf
(polar coordinates).

The property underlying the definition of Carleson measures is not lim-
ited to cubes but also extends to more general sets. Given an open set
E CR™ let

E = {(z,t) e R : B(z,t) C E}.
Then the following is true.

Lemma 9.4. Ifv is a Carleson measure in R’fl and E C R™ is open, then

v(E) < C|V|IIE|.

Proof. In R", form the Calderén-Zygmund decomposition of the character-
istic function of E at height 1/2. This yields a collection of disjoint dyadic
cubes {Q;} such that

Ec|JQ; and |EI<) |Q;l<2lE
J J

Let (z,t) € E; thenz € Q; for some j. If Qj is the dyadic cube containing
Q; whose sides are twice as long, then Qj contains points of E°. Therefore,
since B(z,t) C E, we must have that t < \/nl(Q;) = 2y/n1(Q;). Hence,

Ec|JQ; x (0,2v/n1(Q;)),
i

and so

v(E) <D v(Qj x (0,2v/n1(Q)))) < I (2vn)* D 1Q51 < Ivli2(2vn)* | El.
i i

g

The converse of Lemma 9.4 is also true. It is straightforward to show
that if for any ball B ¢ R", v(B) < C|B|, then v satisfies Definition 9.3,
and ||v|| is comparable with the constant in this inequality.

A Carleson measure can be characterized as a measure v for which the
Poisson integral defines a bounded operator from LP(R", dz) to L? (R’+'+1, v).
This is a consequence of a more general result.

Theorem 9.5. Let ¢ be a bounded, integrable function which is positive,
radial and decreasing. Fort > 0, let ¢;(x) = t "¢(t " x). Then a measure
v is a Carleson measure if and only if for every p, 1 < p < oo,

(9.1) L Jof@pasan<c | @pa

The constant C is comparable with ||v].
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Proof. First suppose that v is a Carleson measure. Define the maximal
operator

My f(z) = sup{|¢e * f(¥)| : lz — y| < t}.
It is easy to show (cf. Chapter 2, Section 8.7) that
Myf(z) < CMf(z),
where M is the Hardy-Littlewood maximal operator.
Now

02 [ 1@tz

o [ X t) € R s £@)] > A
Let Ey = {x € R" : My f(z) > A}; then
{(z,t) € RT* ¢ |y * f(z)] > A} C E).
Hence, by Lemma 9.4
v({(z,t) € R : gy * f(z)] > A}) < w(Ey) < CIV|l|Es-
Therefore, the right-hand side of (9.2) is dominated by

pOll [0 B2 =l [ Myf(epas < Ol [ 11 ds,

which gives us inequality (9.1).
Now, conversely, suppose that (9.1) holds. Let B C R™ be the ball with
center zo and radius r, and let (z,t) € B (i.e. B(z,t) C B). Then

booxs@l= [ ae-vaz [ st  swa=4
B(zo,r) B{0t) B(0,1)
Hence,
» 1
B < 5 [ oxe@P v <C [ xs@Pds=ClB)
IR'IH R"
so by the remark following Lemma 9.4, v is a Carleson measure. a

Carleson measures can also be characterized in terms of BM O functions.

Theorem 9.6. Let b € BMO and let ¢ € S be such that [y = 0. Then
the measure v defined by

g drdt
t
is a Carleson measure such that ||v|| is dominated by ||b||2.

dv = |b* ()|
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Proof. Fix a cube @ in R™, Since the translate of a BMO function is again
in BMQO, we may assume without loss of generality that @ is centered at
the origin. Let @Q* be the cube with the same center whose side length is
2y/n times larger. Let bg. be the average of b on Q*. Then, since [y =0,

Q)
(@ x (0,1(Q))) = /Q /0 lb*%(z)'z@
1(Q) drdt
Sz/o/o |(b—bQ')XQ'*'¢’t(x)|2 1

1@ , dz dt
Y R ——
o Jo |(b—ba+)x(rm\@+) * $(@)* —
=L +1I,.
(Recall that [(Q) denotes the side length of Q.)

Now,

(b = bo-)xg-) (O Pl KL,
ns2 [ [7ie-bexe ) @FCOR £
since 9(0) = 0, |9)(t€)| < Cmin(|té], |t£|~?), and so
o L gt vie dt 0o gt
[ reorSso [T uerGac [ peeg <

Therefore, by this estimate and by Corollary 6.12,
<o [ b-tel <ClalbE

To estimate Iy, let Qf denote the cube centered at the origin whose side
length is 2% times that of Q*. Then

I< / / Z /Q RCORUS RN,

Since z € Q, if y € Q then |z — y| > 2¥~1/(Q). Therefore, because ¢ € S,
[e(z — )] < CtT™(E1280(Q) ™,

d:z: dt

t

Hence,

Iz<C// 2 / 1b(y) — bQ‘[dy(zkl(Q))nH

0 k+1
Q) (&2 dz dt
<cf [ > sy - ) :

< ClQl|lbl2.

d:v dt
t
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The converse of Theorem 9.6 is also true, although we will not prove it
here: if 1 and v are as above and v is a Carleson measure then b € BMO.
For a proof see Stein {17, Chapter 4].

Finally, if we combine Theorems 9.5 and 9.6 we get the following.

Corollary 9.7. Let ¢ be as in Theorem 9.5, ¢ as in Theorem 9.6 and let
be BMO. Then

/Rﬂ /0 " I 1) Plves b 2 < o2 / 1F(@)P de.

3. Statement and applications of the T'1 theorem

In this section we state our main result, the T'1 theorem, and give several
applications. In the next section we will give its (lengthy) proof.

We will consider operators T' which map the Schwartz class to the space
of tempered distributions, T : S(R*) — S'(R"). In other words, given
f,9 € S(R™), we know the value of (T'f,g). Recall that a function K :
R® x R" \ A — C (where A is the diagonal of R™ x R") is said to be a
standard kernel if it satisfies conditions (5.12), (5.13) and (5.14). We say
that T is associated with a standard kernel K if for Schwartz functions f
and g with disjoint, compact supports,

(9.3) (Tf,g) / / K(z,9)f (0)a(z) dz dy.

The adjoint operator T* is defined by

(T"f,9)=(f,Tg), fg9€SR").
It is associated with the standard kernel K (z,y) = K (y,z).

When T is a bounded operator on L? we can define T'f for f € L™ as a
function in BMO (see Chapter 6, Section 2). Now, however, if we want to
define T on L°°, we cannot use this approach since we do not know a priori
that T is bounded on L2. As a substitute we will define T'f for functions f
which are bounded and in C*. In fact, T'f will be an element of the dual
of CZy, the subspace of C2° functions with zero average.

Fix g € Cg with support in B(0, R) and let f € L°NC™. Fix 91,72 €
C*(R™) such that supp(¢1) C B(0,3R), 1 = 1 on B(0,2R) and such that
1+ 2 = 1. Then fy € S(R™) and (T'(f1)1), g) makes sense. If f were a
function of compact support then by (9.3) we would have that

Te0= [ [ K@it
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%ince f need not have compact support, we instead define (T'(fv2),g) by

L | e - KOl 6awa(e) dedy.

Since g has zero average, this coincides with the previous definition when f
has compact support; for arbitrary bounded, C* functions f this expres-
sion makes sense because the integral in y is taken far from the origin (on
supp(v2)), and (since K is a standard kernel)

Clzf’

|K($,y) - K(Ovy)l S Iy|n+6'

We now define T'f by
(9.4) (Tf,9) =(T(f¥h1),9) + (T(f¥2),9)-

Since g has zero average, this definition is independent of the choice of ¥
and ’wg.

Below we will use (9.4) to define T'1 and T*1.

Given f € C™ N L, we say that Tf € BMO if there exists a function
b € BMO such that

(Tf,9) = (b,9)

for all g € CZ5. Since CZy is dense in H 1 by the duality of H! and BMO
(Theorem 6.15) this is equivalent to saying that

KTf, ) < Cligha-
To state the T'1 theorem we need one more definition.

Definition 9.8. The operator T has the weak boundedness property (cus-
tomarily denoted W BP) if for every bounded subset B of C°(R™) there
exists a constant Cg such that for any ¢;,¢2 € B, z € R™ and R > 0,

(T¢=R, 62| < CpR™,

where

If an operator T is bounded on L? for some p then it is easy to show
that it satisfies the weak boundedness property.

Given a standard kernel K which is anti-symmetric (i.e. K(zr,y) =
—K(y,x)), we can associate it with an operator T by defining

(9.5) (Tf,9) = lim K(z,y)f(y)g9(z) dy dz.
0 Jz—yl>e
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By the anti-symmetry of K this is equivalent to
1
who=; [ [ Keplfte - feam)d iz,
R™ JR™

and this integral converges absolutely: by the mean value theorem (adding
and subtracting f(y)g(y)) the term in square brackets yields a factor of
|y — x| which lets us integrate near the diagonal.

The operator defined by (9.5) has the WBP. In fact, it is enough to
note that

(T477,85) = R™(T; rén, 2),
where T, g is defined as in (9.5) but with the kernel R*K (Rz + z, Ry + z).
This is a standard kernel with the same constants as the kernel K.

The importance of the W BP is shown by the one-dimensional operator
of differentiation. It takes S(R) to &'(R) and is associated with the standard
kernel zero, but is not bounded on L2. It is straightforward to check that
it does not have the weak boundedness property. Clearly, differentiation is
not the operator associated by (9.5) with the kernel zero—that would be
the zero operator which trivially has the WBP.

We can now state the T'1 theorem.
Theorem 9.9. An operator T : S(R") — S'(R"), associated with a stan-
dard kernel K, extends to a bounded operator on L2(R™) if and only if the
following conditions are true:

(1) T1 € BMO,

(2) T*1 € BMO,

(3) T has the WBP.

We have already seen the necessity of these three conditions: (1) and
(2) follow from Theorem 6.6 and the remarks after it, and we noted the
necessity of (3) immediately after Definition 9.8.

Corollary 9.10. If K is a standard kernel which is anti-symmetric and T
is the operator defined by (9.5), then T is bounded on L?(R") if and only if
T1e€ BMO.

This follows immediately from Theorem 9.9 since T always has the W BP
and T*1 = -T1.

Example 9.11 (An application of the T'1 theorem). Recall that in Chap-
ter 5, Section 3, we defined the Calderén commutators,

k
T/ ()  lim (A(x)—A(y)) O
lz—y|>e

e—0 =Yy -y
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~«ie A: R — R is Lipschitz and k¥ > 0 is an integer. These are operators
defined as in (9.5) with anti-symmetric kernels

(A@) - Aw)*

Ki(z,y) = (.’L‘—y)k+1

Corollary 9.12. The operators Ty are bounded on L? and there exists a
positive constant C such that ||Ti|| < CF||A'|%,.

It follows from this result and Definition 5.11 that the T}’s are Calderén-
Zygmund operators.

Proof. From the proof of Theorem 9.9 we will see that the norm of an
operator T depends linearly on the constants involved in the hypotheses; in
the special case of Corollary 9.10 these reduce to the constants of K as a
standard kernel and the BM O norm of Ti1.

Since a straightforward argument shows that the constants of K as a
standard kernel are bounded by C; (k 4 1)[|A’||%,, it will suffice to show that
for some C > 0 and all k,

(9.6) 1Tkl < C*|A')I&,.
For in this case, if C > C; then we have

ITell < Co(Cr(k + 1) + CFAYE < 2007 A'|JE,.

We will prove (9.6) by induction. When k = 0, Ty equals the Hilbert
transform, and so Tp1 = 0. Now suppose that (9.6) is true for some k. If we
integrate by parts we see that

Tes1l = TeA'.

(Formally, this calculation is immediate; however, making it rigorous re-
quires some care. The details are left to the reader.) Therefore,

[Te11lle = ITeAllx < Tkl B0l A'lloo-
From the proof of Theorem 6.6 we have that

I Tiell Lo, BMo < C3(Ca(k + 1) A5, + | Tl 2, 12)
< C3(Ch(k+ 1) + 2C,CHH Y| A1,

Since C1, C2, C3 are all independent of k, if C is sufficiently large then
C3(Ci1(k + 1) + 2C,C*+1) < k2,

This yields the desired inequality. O
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Another operator we considered in Chapter 5, Section 3, is associated
with the anti-symmetric kernel
1
z—y+i(A(z) - Aly))’
and is related to the Cauchy integral along a Lipschitz curve. As we showed
there, if [|A’]lc < 1 then we can expand this kernel as

K(z,y) =

K(z,y) = Z * K (z,).
k=0

From this expansion and Corollary 9.12 we get the following.

Corollary 9.13. There ezists € > 0 such that if ||A’||oo < € then the opera-
tor associated with the kernel K is a Calderdn-Zygmund operator.

For more on these operators see Section 5.2 below.

4. Proof of the T'1 theorem

As we already noted, all that we have to prove is that the three conditions
are sufficient for T' to be bounded on L2. We will consider two cases: first
the case when T'1 = T*1 = 0, and then the general case which we will reduce
to the first. Since the proof is rather long, we will try to clarify it by giving
several intermediate results as lemmas.

Case 1: T1 = T*1 = 0 and T has the WBP. Fix a radial function
¢ € S(R™) which is supported in B(0,1) and has integral 1, and let ¢;(z) =
27in$(277z). Define the operators

ij = ¢j * f and A]‘ = Sj — Sj_l.

Then we can formally decompose T' as
T= Z (S;TA; + A;TS; — AjTA;).
j=—00
The following lemma makes this identity precise.
Lemma 9.14. Let
N
Ry = Y (S;TAj+ A;TS; — A;TA;).
j=—N

Then for f,g € C°(R™),
(Rnf,9)=(Tf,9)

lim
N—oo
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Proof. If we expand the sum for Ry we get
Ry =S_NTS_-n — Sn41TSn41.
Since S_n f converges to f in S(R™), and since T is a continuous map from
S(R™) to §'(R™),
Jim (S-NTS-nf,9) = (Tf,9)-
Therefore, we need to show that

(9.7) [lim (SNTSnf,9) =0.

We will prove this using the WBP for T. For N > 1 define the functions

fn(@) =27V (g f(2V) (@)-
Then {fn} is a bounded subset of C2°(R"™) since the fy’s are supported in
a fixed, compact subset of R™ and satisfy the uniform bound

D% fnlloo < LF 111D @lloo-
Define the sequence {gn} in the same way. Then by the WBP,
(T (@™, gn(2V)| < OV,
Since fn(2~Nz) = 2"V Sy f(z) and g satisfies the same identity, it follows
that
TSN, Sng)| < C27V.

If we let N tend to infinity we get (9.7). O

By Lemma 9.14, to prove that 7 is bounded on L? it will suffice to
prove that the Ry’s are uniformly bounded on L2. We will show this by
applying Cotlar’s lemma. For simplicity, we will only consider the operators
T; = S;TA; and show that ||T;T; ||, |IT; Tkl < C27%1=*, where & comes
from the standard estimates for K, the kernel of T. Simiilar estimates for
the other two summands are gotten by analogous arguments. (Note that
below we only use the hypothesis T*1 = 0; in the arguments for these other
operators we use the fact that T1 = 0.)

We begin by finding the kernel of T}: let ¢ = ¢ — ¢, and define

s =290 (155 and wy =2y (M),
Then for f,g € C>®(R™),
@10 =@, S0 = [ [ et eniwete) dyde.
Hence, the kernel K; of T} is
K;(2,y) = (TWY, 6%).
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Lemma 9.15. Define p(z) = (1+|z|)™"~%, where § is the constant from the
estimates for K as a standard kernel, and let pj(z) = 277"p(279z). Then

(1) |Kj(z, )| < Cpj(z —y);
(2) 1K;(z,y) — Kj(w,y)] < Cmin(1,277|z - w|)[pj(z — y) + pj(w —y)],
and the analogous inequality in the second variable;

(3) for all z, /R Kj(z,y)dy =0,
(4) for ally, /R Kj(z,y)dz =0

Proof. (1) First suppose that |z —y| < 10- 2. If we let ¢p(u) = d(u —
273(z — y)), then (as we vary z and y) ¢ runs over a bounded subset of
C°(R™). Further, ¢7 = ¢Y, so by the WBP

|Kj(z,y)| = KTWY, ¢%)| < C27™ < Cpj(z — ).

If |z — y| > 10 - 27, then ¢7 and 'L/)y have disjoint supports, and so

Ki(z,y) = /Rn /Rn ¢i(z — u)K (u,v)9;(v — y) dudv.

Since 1 has zero integral, this can be rewritten as

K;(@,y) = //w W) K (w,0) — K, )] (0 — y) dudv.

Because of the supports of ¢; and ¥;, we must have that |z —ul,|v—y| < Py
and |u — y| = |z — y|- This, together with inequality (5.13), which holds
since K is a standard kernel, gives us that
C278
|KJ_($7 y)l —_ | |n+5 p— CPJ(I - y)

(2) If lw — x| > 27 then this inequality follows from (1). Therefore, we
may assume that jw — z| < 27. If u is on the line segment between x and w
then

pi(u—y) < Clpj(z —y) + pj(w —y)].
Hence, (2) follows from the mean value theorem if
IV.K;j(z,9)| < C277pj(z —y).
To prove this it suffices to note that
V:Kj(z,y) = (TyY, Ve5) = 2 (TyY, (V§)])
and then to argue as we did in (1).

The same argument with V, gives us the analogous inequality in the
second variable.
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(3) Formally, this identity is equivalent to T'1 = 0. To actually prove it,
note that for R > 2/*! we have by Fubini’s theorem that

Kj(z,y) dy = (Th, ¢7),
ly|<R

h(u) = 279" /MSRzp (";jy> dy.

This is zero if |u| > R + 2/*! since supp(y) C B(0,2), and it is zero if
|lu| < R — 27*1 since ¢ has zero integral and compact support. If R is
sufficiently large then h and ¢7 have disjoint supports, so we can evaluate
(Th,¢7) using (9.3). Therefore, by the standard estimates for K,

9—in -
/ ¢ (” x) dvdu
R-21+1<ul<R42+! Jre U — 1] 27
S C2—jRn-lR_n,

where

(Th,¢5)| <C

and this tends to zero as R tends to infinity.

(4) Formally, this identity is equivalent to T*1 = 0; we will use this fact
to prove it. Arguing as we did above, for R > 27 we have that

Kj(z,y) de = Kj(z,y) dz — (Tyj,1) = (], T"h),
lel<R lel<R

h(u) = 2-J'"/H<R¢(“;.””) dz — 1.

Since ¢ has integral 1 and supp(¢) C B(0,1), h(u) =0 if ju| < R — 2. For
R sufficiently large, 17 and h have disjoint supports, so by (9.3), and again
since 1 has zero integral and supp(y) C B(0,2),

where

(¥, T"h)
- / / (K (u,v) — K(u,y)]h(w)27" (u> dudv.
lv—yl<22+1 Jjul>R-27 g
Therefore, by the standard estimates for K,

. T
|(w¥,T* k)| < C2~7 / / B k| Y

. _ 6
lv—y|<29+! Ju|>R-27 |U y|n+

. du
com[ | in
luj>R/2 [u["+0

and the last term tends to zero as R tends to infinity. O
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To complete the proof we need to estimate the norm of T;T} as an
operator on L2. The kernel of this operator is

Anle) = [ K@K 2)ds
and it satisfies two estimates.
Lemma 9.16.
(1) For all z, /R Asae,y)ldy < 020K,

@) for alty, [ Aju(ay)|do < C28H
R"l
Proof. By Lemma 9.15
|4 k(z,y)| = Vm Kj(z, z)[Kk(y, 2) — Kk (y, z)] dz

(%5) s C/nn pi(z = 2)min(1, 27z — z})pk(z — ¥) + pe(z ~ y)] dz.
It is easy to see that
/Rnpk(l—y)dy=C
and that
/R" pj(z — z) min(1,27*|z — 2|) de < C27 01k,

The desired inequalities now follow immediately: we get (1) if we write the
integral of (9.8) as

c / pi(@ ~ 2)min(1,2"¥z — 2[) / [pi(z — ) + pi(z — v)] dy dz,

and we get (2) if we write the integral of (9.8) as

c/ e(z = 9) (/ pj(z—z)min(1,2—'=|x—z|)dz) dz

+ CL pe(z —y) (/Rﬂ pj(z — 2z) min(1,27%|z — z]) dz) dz.

Given Lemma 9.16, it is simple to show that
IT5TR | 2 12 < C2~00HL,
By the Cauchy-Schwarz inequality, if f € S(R™),

2
5= [ | [ A nioa]
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< [ (L et ([ 1asetenlisor e ) e

< C2 UM 13,

Essentially the same argument gives the same bound on the norm of
T Ty Therefore, we can apply Cotlar’s lemma to the Ry’s, and this com-
pletes the proof of the case when T'1 = T*1 = 0.

Case 2: Arbitrary operators T.

Lemma 9.17. Given any function b € BMO, there erists a Calderdn-
Zygmund operator L such that L1 = b and L*1 = 0.

Assume Lemma, 9.17 for a moment. Given an operator T which satisfies
the conditions of the T'1 theorem, suppose T'1 = b; and T*1 = by. Then
there exist Calderén-Zygmund operators L; and L2 such that L1 = by,
L31 = 0, L1 = by and L1 = 0. Then the operator T =T-L;— L} has
the W BP and satisfies T1 = T*1 = 0. Therefore, by the previous argument
T is bounded on L? and so T is as well.

Proof of Lemma 9.17. Let ¢ and 9 be radial functions in S(R™) which
are supported in the unit ball and such that ¢ is positive and has integral 1
and 1 has integral zero. Define the operator L by

Lf=c [ vor (@etioo ) T,

where ¢ is a constant which we will fix below. (The operator L is called
a paraproduct.) We will show that the kernel of L satisfies the standard
estimates, that L is bounded on L?, and that L1 = b and L*1 = 0. In order
to be rigorous in the following calculations we ought to integrate between ¢
and 1/e¢ and then let € tend to 0. However, we will omit these details.

(1) The size of the kernel. The kernel of L is

dt

ke =c [ [ we-awm@ac-nag=c [ KEnf

Fix z € R™ and let Q be a cube with center z and side length 2¢, and let bg
be the average of b on Q. Then, since 9 has zero average,

(e  b)(2)| = I/Q%(z — ) (b(y) — bg) dy| < 2"|[¥lcollbll-

Therefore,

n c
|Ke(2,9)] < 2%[[Wlloollblle e lloollells < -2 1Bl
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Since Ki(z,y) = 0if |z — y| > 2t, we also have that

|Ki(z,y)| < Cllbll ™ (1 + 2 yl)
It follows from this that
Clib|l
K(z,y)| < .
K@) < g

By analogous arguments we can also show that

-2
— T
VeKm)|+ Vel < bl (14 E24) 7

and so we have that

VoK (@,9)| + |V, K (z,y)| < <ol

lx —ym+1

From these inequalities it follows that K satisfies (5.12), (5.13) and (5.14)
with § = 1 and constant C||bl|.

(2) Boundedness on L%. Let g € S(R™) with ||g|l2 < 1. Then

(Lig)=c / / (e = B)(2) (B » £ () (W 9(0) 222

SC(// ld}z*b(ﬂﬁ)lzltbz*f(:c)lzﬂaf)l/2
(// lzdmdt)”z.

By Corollary 9.7 the first term is bounded by C||b||.|| fl]2- In the second term,
if we apply the Plancherel theorem to the inner integral and then exchange
the order of integration and integrate in ¢, we get the bound Cl|g||2. Hence,
(Lf,g) < C|Iblllfll2ligll2, so L is bounded on L2.

(3) L1 =b and L*1 = 0. For each t > 0 we have that

(e * (e % D)t * )" = B x (e * b)e ).
Since 1) has zero integral, ¥ * 1 = 0 and so it follows that L*1 = 0.
Now let g € Cgy. Since for all z, ¢ * 1(z) = 1, we have that

(L1,g) = c/ / Y * b(z) e * 1(z)ye * () dzdt

=C/0 /n b(z)d’t*"/&*g(ﬁ)d—mﬁ.

For this integral to equal (b, g), as desired, we need
© dt
(9.9) C/ 'l/Jc*i/)t*g?:Q,
0
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where the integral is understood to converge in H'. We omit the details. We
note, however, that (9.9) determines the value of ¢ which we left undefined
above. If we take the Fourier transform we see that (9.9) holds in L? if and
only if for any £ # 0,

2dt
¢ /0 o t6)|

Since 1 is radial, the integral does not depend on £, and so this determines
the value of c. a

5. Notes and further results

5.1. References.

Cotlar’s lemma appeared for the first time in an article by M. Cotlar
(A combinatorial inequality and its applications to L? spaces, Rev. Mat.
Cuyana 1 (1955), 41-55) for self-adjoint operators. The general case we give
is due independently to M. Cotlar and E. M. Stein and appeared first in a
paper by A. Knapp and E. M. Stein (Intertwining operators for semi-simple
groups, Ann. of Math. 93 (1971), 489-578). Carleson measures and their
characterization by Theorem 9.5 are due to L. Carleson (An interpolation
problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930;
and Interpolation by bounded analytic functions and the corona problem,
Ann. of Math. 76 (1962), 547-559). Their relationship to BMO is due to
C. Fefferman and E. M. Stein (H? spaces of several variables, Acta Math.
129 (1972), 137-193).

The T'1 theorem is due to G. David and J. L. Journé (A boundedness
criterion for generalized Calderén-Zygmund operators, Ann. of Math. 120
(1984), 371-397). There are a number of proofs of this theorem; we followed
the original, as further expanded in the thesis of G. David (Univ. Paris
Sud, 1986). A much shorter proof is due to R. Coifman and Y. Meyer (4
simple proof of a theorem by G. David and J.-L. Journé on singular integral
operators, Probability Theory and Harmonic Analysis, J. Chao and W. Woy-
czyniski, eds., pp. 61-65, Marcel Dekker, New York, 1986); it also appeared
in their article in Stein [16] and in the book by Torchinsky [19]. The orig-
inal proof and yet another proof using wavelets appear in volume II of the
book Ondelettes et Opérateurs by Y. Meyer (Hermann, Paris, 1990; Eng-
lish translation in Y. Meyer and R. Coifman, Wavelets: Calderdon-Zygmund
and Multilinear Operators, Cambridge Univ. Press, Cambridge, 1997). The
operators in Lemma 9.17, the so-called paraproducts, were first introduced
by R. Coifman and Y. Meyer {2]. For an overview including applications
and their relation to the T'1 theorem, see the monograph by M. Christ (Lec-
tures on Singular Integral Operators, CBMS Regional Conference Series in
Mathematics 77, Amer. Math. Soc., Providence, 1990).
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The version of the T'1 theorem given by Stein [17] is very interesting.
The WBP and the conditions on 7’1 and T*1 in the statement of the the-
orem are replaced by a “restricted boundedness” condition for T and T™*:
IT(@%R) ||z, |1 T* (¢™F)]|l2 < CR™2. The role of BMO appears in the proof:
restricted boundedness and the conditions on the kernel are enough to define
the action of the operator on constant functions and to realize it as a BMO
function. But BM O does not appear in the statement of the theorem, and
it only involves the space L2.

5.2. Calderén commutators and the Cauchy integral.

The operators given as applications of the T'1 theorem in Section 3
were first studied by A. P. Calderén. He proved that the commutator Ty
is bounded on L? (Commutators of singular integral operators, Proc. Nat.
Acad. Sci. U.S.A. 53 (1965), 1092-1099) and proved Corollary 9.13 ( Cauchy
integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci.
U.S.A. 74 (1977), 1324-1327). Also see his survey paper Commutators,
singular integrals on Lipschitz curves and applications (Proceedings of the
1.C.M. (Helsinki, 1978), pp. 85-96, Acad. Sci. Fennica, Helsinki, 1978). The
boundedness on L? of the remaining commutators was proved by R. Coifman
and Y. Meyer (Commutateurs d’intégrales singuliéres et opérateurs multi-
linéaires, Ann. Inst. Fourier 28 (1978), 177-202) with bounds worse than
those in Corollary 9.12 (on the order of k!||A’||%,). These do not allow the se-
ries in the proof of Corollary 9.13 to be summed. The restriction of this corol-
lary that ||A’||o < € is not necessary: the result is true for any A such that
A’ € L. This was first proved by R. Coifman, A. McIntosh and Y. Meyer
(L’intégrale de Cauchy définit un opérateur borné sur L% pour les courbes
lipschitziennes, Ann. of Math 116 (1982), 361-387). G. David ( Opérateurs
intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. Ec.
Norm. Sup. 17 (1984), 157-189) obtained the general result starting from
Corollary 9.13 by proving that if it is true for ||A’[|c < € then it is true for
[Alloo < lr,oe. A similar argument was developed independently by T. Murai
(Boundedness of singular integral operators of Calderén type, Proc. Japan
Acad. Ser. A Math. Sci. 59 (1983), 364-367); see also his book which is cited
below. Further, David gave a characterization of those curves on which the
Cauchy integral defines a bounded operator on L?: they are precisely those
curves such that any circle of radius r contains in its interior a piece of the
curve of length at most Cr for C fixed. (These are usually referred to as
Ahlfors-David curves.)

In the book by T. Murai (A Real Variable Method for the Cauchy Trans-
form and Analytic Capacity, Lecture Notes in Math. 1307, Springer-Verlag,
Berlin, 1988) the first two chapters are devoted to the study of the L? bound-
edness of the commutator 71 and the Cauchy integral. It contains several



214 9. The T1 Theorem

proofs of these results; of interest is the short proof for the Cauchy integral
due to P. Jones and S. Semmes. This proof and a second one appear in
a paper by these authors and R. Coifman (Two elementary proofs of the
L? boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math.
Soc. 2 (1989), 553-564); see also P. Jones (Square functions, Cauchy in-
tegrals, analytic capacity, and harmonic measure, Harmonic Analysis and
Partial Differential Equations (El Escorial, 1987), pp. 24-68, Lecture Notes
in Math. 1384, Springer-Verlag, Berlin, 1989) and S. Semmes (Square func-
tion estimates and the T(b) theorem, Proc. Amer. Math. Soc. 110 (1990),
721-726). A very elementary geometric proof of the general result was found
by M. Melnikov and J. Verdera (A geometric proof of the L? boundedness of
the Cauchy integral on Lipschitz graphs, Internat. Math. Res. Notices 1995,
no. 7, 325-331).

5.3. The bilinear Hilbert transform.

While studying the L? boundedness of the commutator Tj, Calderén
showed via an argument analogous to the method of rotations (see Chapter 4,
Section 3) that 77 is bounded if the family of bilinear singular integral
operators

Ho(f,0)@) =lim [ fz—tg(a+at)
=0 Jjtj>e t

is a uniformly bounded map from L?(R) x L*(R) to L?(R) for —1 < a < 0.

When a = 0 this operator reduces to H f - g and when a = —1 to H(f - g),

where H is the Hilbert transform. Therefore, the problem is to show that

H, is uniformly bounded for —1 < a < 0.

The operator Hj is called the bilinear Hilbert transform. Calderén also
posed the simpler problem of proving that H; is a bounded operator from
L? x L? into L.

For over thirty years no progress was made on these problems. Then
in a pair of remarkable papers, M. Lacey and C. Thiele (L? estimates on
the bilinear Hilbert transform for 2 < p < oo, Ann. of Math. 146 (1997),
693-724, and On Calderdn’s conjecture, Ann. of Math. 149 (1999), 475-496)
proved the following result.

Theorem 9.18. Given a € R and exponents p1, p2 and p3 such that 1 <
p1,p2 <00, p3 > 2/3 and 1/p1 + 1/p2 = 1/ps, then

|Ha(f, 9)llps £ Capr,pe "f"m ”9“?2

Theorem 9.18 establishes Calderén’s conjecture for the bilinear Hilbert
transform and shows that the operators H,, —1 < a < 0, are bounded.
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However, the constant C, 2 oo is unbounded as a tends to —1 and 0, so this
result does not complete Calderén’s proof of the L? boundedness of 7;. But
as this book was going to press, L. Grafakos and X. Li announced a proof
that the constant is independent of @ when 2 < p;,p2 < 00 and 1 < p3 < 2,
and in all the cases covered by Theorem 9.18 if a is bounded away from —1.

5.4. The Tb theorem.

The T'1 theorem does not give a better result for the Cauchy integral
than Corollary 9.13 because we cannot directly calculate the action of the
operator on the function 1. However, A. McIntosh and Y. Meyer (Algébres
d’opérateurs définis par des intégrales singuliéres, C. R. Acad. Sci. Paris 301
(1985), 395-397) generalized the T'1 theorem as follows. Let b be a function
which is bounded below (more precisely, for some § > 0, Reb(y) > § for all
y). f Tb=T*b=0and M,TM, has the W BP (where M, is multiplication
by b), then T is bounded on L2. If we let b(y) = 1 + iA’(y), then this is
bounded below and one can show that the Cauchy integral of b is zero, so
we can apply this result directly to the Cauchy integral.

With this result as their starting point, G. David, J. L. Journé and
S. Semmes (Opérateurs de Calderdn-Zygmund, fonctions para-accrétives et
interpolation, Rev. Mat. Iberoamericana 1 (4) (1985), 1-56) found a signif-
icant generalization of the T'1 theorem, the so-called Tb theorem. To state
it, we need several definitions. Given u, 0 < p < 1, define C¥(R™) to be the
space of functions of compact support such that
|f(z) — f(y)l

flly=sup—"—F"= < ©
” ”# oy Ix_yl#

Given a function b, let bC¥ = {bf : f € CF}.
A bounded function b : R® — C is para-accretive if there exists § > 0

such that for every £ € R™ and r > 0 there exists a ball B = B(y,p) C
B(z,r) with p > ér which satisfies |bg| > 4.

Theorem 9.19. Let by and by be two para-accretive functions on R"™ and
let

T : b;C*(R™) — (b2CH(R™)

be an operator associated with a standard kernel K(z,y). Then T has a
continuous extension to L? if and only if Thy € BMO, T*by € BMO and
My, TM,, has the WBP.

Because Theorem 9.19 is given in terms of the space C¥ instead of C°,
it can be generalized to spaces of homogeneous type (see Chapter 5, Sec-
tion 6.4). There are other variants of this result, including defining T'b for
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functions b not in C*° and a somewhat different version of the weak bound-
edness property. For all of these results we refer to the articles cited above.
See also M. Christ (A T'(b) theorem with remarks on analytic capacity and
the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628), and the book
by Meyer cited above.
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and BMO, 121
and H!, 129
Marcinkiewicz, 29
and LP'9 (Lorentz spaces), 41
size of constants, 30
Riesz-Thorin, 16
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John-Nirenberg inequality, 123
converse, 125
Jordan's criterion, 3

Kakeya maximal function, 46

Kakeya set, 47

kernel
conjugate Poisson, 50, 62
Dirichlet, 3, 18
Fejér, 9, 18
Gauss-Weierstrass, 19
Poisson, 11, 19, 49, 61
standard, 99

Kolmogorov
and divergent Fourier series, 9
lemma, 102
theorem, 52, 62

LP, xvii

L®°, xviii

LP(B), 105

LP(w) (weighted LP), 133

L%, 90, 163

L?9 (Lorentz spaces), 41, 112

L2, 163

Laplacian (4), 80, 88

Lebesgue
differentiation theorem, 36, 46
number, 7
point, 36

Lipschitz spaces, 114, 129

Littlewood-Paley theory, 159, 185
weighted, 186

localization principle, 4

Lusin area integral, 128

Marcinkiewicz
interpolation
and LP? (Lorentz spaces), 41
interpolation theorem, 29
multiplier theorem, 166, 186, 190
maximal functions
along a parabola, 179
directional, 74, 87
dyadic, 33
and sharp maximal function, 121, 144
dyadic spherical, 178
fractional, 89, 130
grand, and HP spaces, 127
Hardy-Littlewood, 30, 133
Llog L estimates, 37, 42

and approximations of the identity, 31

and dyadic maximal function, 35

as vector-valued singular integrals, 111

non-centered, 30, 133
norm inequalities, 31, 35
on BMO, 129

reverse (1, 1) inequality, 42
size of constants, 43, 75
weighted norm inequalities, 37, 135,
137, 152, 154
weights involving, 37, 134, 140, 156
Kakeya, 46
non-tangential, 45
and HP spaces, 127
one-sided, 40
rough, 74, 87
sharp, 117, 121, 130, 144
and singular integrals, 143, 152
spherical, 191
weighted norm inequalities, 192
strong, 45
Llog L estimates, 46
weighted norm inequalities, 152
weights involving, 153
with different measures, 44, 153
maximal operator of a family of linear
operators, 27, 56, 75, 147, 152
method of rotations, 74, 84, 86, 179, 214
Minkowski’s integral inequality, xviii
multiplier theorems
Hormander, 164, 190
Marcinkiewicz, 166, 186, 190
multipliers, 58, 66, 163
Bochner-Riesz, 47, 169, 187
and restriction theorems, 189
critical index of, 169
of Fourier series, 67
weighted norm inequalities, 164, 190

non-isotropic dilations, 108
non-tangential approach regions, 45
nonhomogeneous spaces, 109

operator algebras, 80, 86
Orlicz spaces, 42, 66
orthogonality relations, 2

para-accretive functions, 215
parabolic operators, 108, 178
paraproducts, 210
Plancherel theorem, 15
Poisson
integrals, 19, 49, 70
and HP functions, 126
and Carleson measures, 198
non-tangential maximal function, 45,
127
kernel, 11, 19, 49, 61
conjugate, 50, 62
summation formula, 20
potential
logarithmic, 70
Newtonian, 70
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principal value

of 1/x, 50

of |z|~" ", 97
pseudo-differential operators, 85, 113
pseudo-metric, 109

Rademacher functions, 177
restriction theorems, 188
and Bochner-Riesz multipliers, 189
reverse Holder inequality, 137, 151
reverse Jensen inequality, 150
Riemann localization principle, 4
Riemann-Lebesgue lemma, 4, 11
Riesz
potential, see also fractional integral
operators
theorem, 52, 62
transforms, 76, 110, 150
and H!, 116, 127
and differential operators, 81
Riesz-Thorin interpolation theorem, 16
rising sun lemma, 40

S, xviii, 12
S, 13
Schwartz class, xviii, 12
singular integrals, 69, 91
and BMO, 118
and H!, 116
and VMO, 131
and Littlewood-Paley theory, 172, 192
and pseudo-differential operators, 113
and the Hilbert transform, 70
as convolution with tempered
distributions, 69
maximal, 75, 147, 152
norm inequalities, 75, 79, 84, 87, 91, 93,
97, 106, 172, 176, 192, 203
on curves, 193
size of constants, 110
strongly singular, 112
truncated, 55, 94, 110
vector-valued, 106, 157
and maximal functions, 111
weighted norm inequalities, 144, 145,
147, 150, 152, 155, 159, 192
with even kernel, 77
with odd kernel, 75
with variable kernel, 84
Sobolev
embedding theorem, 90
space, 90, 114, 163
BMO and exponential integrability,
130
spaces of homogeneous type, 109
and HP spaces, 128
spherical harmonics, 85

square functions, 176
standard kernel, 99
sublinear operator, 28
summability methods
Abel-Poisson, 10, 18, 25, 32
Cesaro, 9, 18, 25, 32, 168
and Gibbs phenomenon, 21
from Bochner-Riesz multipliers, 188
Gauss-Weierstrass, 18, 25, 32

T1 theorem, 203

Tb theorem, 215

tangential approach regions, 45
Tomas-Stein theorem, 189
translation invariant operators, 66
Triebel-Lizorkin spaces, 185

uniform boundedness principle, 6

Van der Corput’s lemma, 183
Vitali-type covering lemma, 44
VMO (vanishing mean oscillation), 131
and commutators, 132
and singular integrals, 131

W BP (weak boundedness property), 202
weak (p, g) inequalities, 26

almost everywhere convergence, 27
weights

and Aj, 38, 134, 140

and Ao, 139, 149, 152

and Ap, 133, 135

and A}, 152

Young’s inequality, 17, 22



